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Abstract

Currently, first-order hidden Markov models (HMMs) form the backbone around

which most automatic speech processing applications are built. Their higher-order

extensions are known to be more powerful, but, due to their complexity and

computational demands, they are seldomly used. It is the purpose of this work to

advance their application

In this work we unify HMMs of all orders by deriving and proving the ORder

rEDucing (ORED) algorithm. This algorithm wil l reduce any higher-order HMM

(also mixed-order) to an equivalent first-order representation. This makes it possible

to process any higher-order HMM using known first-order algorithms, thereby

making unnecessary the current approach of extending specific HMM algorithms to

specific higher orders. It also provides an alternative theoretical basis to reason about

high-order HMMs. From this perspective high-order transition probabil ities are

simply powerful mathematical specifications of first-order topology. We use this

insight to explain old topologies and to design new ones.

We address computational concerns by developing the Fast Incremental Training

(FIT) algorithm. This algorithm avoids training redundant high-order probabil ities by

noting which lower-order transition probabilities are zero. This considerably reduces

the memory and processor requirements during training. In addition, the resultant

models have far fewer parameters and generalise better on previously unseen data.

To show the practical applicability of our methodology we apply it to automatic

language recognition. We find that it compares well with systems that require

expensive transcribed databases (our system does not require this).
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Opsomming

Tans vorm eerste orde verskuilde Markov modelle (HMMs) die ruggraat waarom

meeste outomatiese spraakverwerkingstelsels gebou word. Dit is bekend dat hoër orde

modelle kragtiger is, maar vanweë hulle kompleksiteit en verwerkings-vereistes word

hulle selde gebruik. Hierdie werk het ten doel om hulle toepassing te bevorder.

Met die daarstelling en bewys van die orde-reduserings-algoritme (ORED), word

HMMs van alle ordes verenig. Hierdie algoritme reduseer enige hoër orde HMM (ook

gemengde orde) na ‘n ekwivalente eerste orde voorstelling. Dit maak dit moontlik om

enige hoër orde HMM met behulp van eerste orde algoritmes te verwerk. Daardeur

word die huidige benadering waarmee spesifieke HMM algoritmes tot spesifieke

ordes uitgebrei word, oorbodig. Dit verskaf ook ‘n alternatiewe teoretiese basis

waaruit oor hoër orde HMMs geredeneer kan word. Vanuit hierdie perspektief is hoër

orde oorgangswaarskynlikhede maar net kragtige wiskundige spesifikasies van eerste

orde topologië. Hierdie insig verklaar bekende topologië en word gebruik om nuwes

te ontwerp.

Hoë verwerkings-vereistes word beperk met ‘n vinnige inkrementele afrig-algoritme

(FIT). Hierdie algoritme bespeur en vermy oortollige hoër orde

oorgangswaarskynlikhede deur te let op laer orde oorgangswaarskynlikhede wat nul

is. Dit verminder die geheue- en verwerkingsvereistes aansienlik. Verder is die

resulterende modelle meer kompak. Hulle veralgemeen ook beter wanneer hulle op

nuwe data toegepas word.

Die praktiese bruikbaarheid van hierdie tegnieke word gestaaf deur dit toe te pas op

outomatiese taalherkenning. Sonder om tydens afrigting transkripsies te gebruik,

vergelyk die stelsel goed met huidige stelsels wat wel transkripsies nodig het.
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Chapter 1  Purpose, objectives and contribution

1.1 Motivation for and topicality of the research

Before we begin a detailed discussion on the subject, we note some perspectives of a

few well-known authors on higher-order hidden Markov Models (HMMs)1:

In his book on Speech Communication, O’Shaughnessy (1990, p. 461)

comments on this by noting that “Higher-order Markov processes could

exploit restrictions on which sounds may occur in sequence within words, but

the computational complexity of such models has thus far precluded their

application to acoustical analysis in ASR” .

In their handbook, Deller, Proakis and Hansen (1993, p. 681) supply only a

single remark in a footnote: “ ... in theory, nothing precludes dependence upon

N past states, but the complexity of training this model and recognition using

it increases dramatically with each increment ....” .

Juang and Rabiner (1992, p. 544) devotes a full paragraph to the topic: “Until

now almost all HMM formulations for speech recognition are based on a

simple first-order Markov chain. ... When an HMM is used in higher levels of

a recognition system, such as syntactic or semantic processing, the first-order

formulation turns out to be inadequate. ...Although the structural simplicity of

a first-order model makes the computation simple and straightforward, there

may be a need to complete the analytical framework of higher-order models.

                                               

1 These quotations represent the only discussion of high-order HMMs in these references.
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Also, for such higher-order models to be practically useful, many of the

implementational advantages of the first-order case may have to be

formulated in an appropriate manner.”

These quotations highlight advantages that may be obtained from the longer past state

sequence that a high-order HMM takes into account when making a transition. There

are many situations where a pattern recognition system can benefit from incorporating

longer-term dependencies in the data that it is modelling. Viewing our world through

first-order HMM spectacles, is equivalent to saying that what is going to happen next,

is dependent only on the here-and now. When humans communicate, this is obviously

not true. The physical constraints on speech production, as well as the necessity to

make our language robust, gave rise to longer-term structure. Our expectation of

future sounds is rooted in a far larger context than just current events.

These quotations next focus on the vastly increased computational requirements of

higher-order HMMs as the reason for their almost total absence from literature. The

need expressed in the last part of the quotation from Juang and Rabiner (1992) is the

primary inspiration for this research. In this work we expand the analytical framework

of high-order HMMs and develop techniques to address some of the problems

indicated by Juang and Rabiner. We are able to show practical application of higher-

order HMMs to real-world speech problems.

1.2 Statement of the problem

Very little literature is available on high-order HMMs, and what is available, is

specifically concerned with extensions to second-order (He, 1988; Kriouile, Mari and

Haton, 1990). The current piecemeal approach to extending HMM algorithms to

higher order has some shortcomings. Current approaches implement specialised
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algorithms for each HMM order, which must certainly have impeded its widespread

use. It also fetters a wider perspective on HMMs irrespective of order; fundamental

questions, such as whether HMMs of different order have equivalent representational

capacity, or should be considered as different subdivisions on the larger tapestry of

the Chomsky hierarchy of languages, are not immediately evident. During the late

seventies, effective implementation catapulted first-order HMMs to the front line of

speech processing. On higher-order HMMs, the art still needs to progress beyond just

acknowledging that they are very expensive. Little is known about their training

behaviour and possibil ities for efficient implementation.

1.3 Research objectives

This work aims to:

• find a unifying perspective linking HMMs of all orders,

• find a technique facilitating efficient training of high-order HMMs while at the

same time maintaining or enhancing its quality,

• demonstrate the practical applicability of these techniques using a non-trivial real-

life problem.

1.4 HMM concepts

In subsequent sections of this chapter we discuss the literature on high-order HMMs

and also provide an overview of our own research. The discussion here will

concentrate on the necessary key concepts, leaving the details and mathematical

treatment to Section 2.2.

We use HMMs (for a good introduction see Rabiner & Juang, 1985) to model a

sequence of observations and their relationship to each other. For our purpose these
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are descriptions of short consecutive speech segments that together describe a whole

utterance. An HMM models utterances like these with a finite number of states. Each

state has a probability density function (pdf.) describing the nature of the speech that

it associates with. These pdf.s are indicated in Figure 1-1 by if  where i is the state

number. Having described the individual sounds, the way in which they may combine

is described by arrows that join states. The probability of such a combination is

indicated by the a’ s in Figure 1-1 and Figure 1-2.

h

j
f j

k
fk

a jk

i

Figure 1-1. Part of a first-order HMM . The pdf. if describes features from
state i.

h

j
f j

k
fk

i

ahjk

a ijk

Figure 1-2. The second-order version of the HMM in Figure 1-1.

In Figure 1-1, the transition to state k depends only on the current state j, thereby

making jka  a first-order transition probabil ity. In Figure 1-2, however, the terms hjka

and ijka describe the probabil ity of making a transition to state k given that the current

state is j and the previous one was respectively i or h. Because two prior states are

taken into account when making the transition to the destination state k, these are

second-order transition probabilities. The order of the model therefore specifies the

context (history) that is being taken into account when deciding on the appropriate
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combination of states. Using the first-order transition probabil ity ( jka ) in Figure 1-1,

we will not be aware of whether the prior state was h or i when making a transition

from j to k. The second-order transition probabil ities explicitly account for this extra

context. As will be seen later, computational cost increases exponentially with the

order of the HMM, making high-order modelli ng very expensive indeed. There are

three modes of applying (first-order) HMMs (Rabiner & Juang, 1985):

• When we use HMMs to classify observation sequences, we assume that the

observation sequence was generated by one of them. To decide which one, we

need to evaluate the likelihood of each of them producing this observation

sequence. The HMM formulation, however, “hides” 2 the exact state sequence that

generated the data by means of the pdf.s if . Taking the contribution of all

possible state sequences into account is intractable when done in a naive way. The

eff icient way in which the Baum-Welch algorithm, and its (close) approximation,

the Viterbi algorithm does this, catapulted first-order HMMs to the principle tool

used in automatic speech recognition.

• States and groups of states are often associated with concepts like phonemes and

words. Since  the  recovery  of  those concepts  from a larger observation sequence

                                               

2 Hence the name hidden Markov model. It is this characteristic that distinguishes HMMs from Markov
chains and N-gram models. Section 2.2.4 expands on the similarities of, and differences between, these
topics.
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(speech) is of prime importance in some applications, we need to be able to

determine the state sequence most likely to have generated an observation

sequence. Since the Baum-Welch algorithm simultaneously considers all state

sequences, it is not useful for this. The Viterbi algorithm, however, specifically

only considers the most likely state sequence, making it an obvious choice for

doing segmentation (or decoding) of a larger observation sequence.

• Lastly, we should be able to optimise or train the parameters of an HMM to

optimally reflect the observation sequences it represents. Embedding either the

Baum-Welch or the Viterbi algorithms in an expectation-maximisation (EM)

algorithm (Dempster, Laird & Rubin, 1977) results in the so-called re-estimation

equations commonly used to train HMMs with. These algorithms are guaranteed

to yield a locally optimal solution, but are not necessarily globally optimal

(Levinson, 1985).

1.5 Prior work on high-order hidden Markov models

Due to the difficulties associated with higher-order HMMs, literature3 is (surprisingly)

sparse. In this section we discuss these without much reference to our research,

thereby sketching the backdrop against which this study has taken place. We wil l,

however, in Section 2.6 return to this topic to provide more perspective on the

relationship of our research to the existing literature.

                                               

3 In this section we will not concern ourselves with Markov chains or N-gram models, but wil l only
focus on the available literature on higher order HMMs (see Section 2.2.4 for a discussion of these
concepts).
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The earliest reference found is by He (1988). He uses a twofold product of the

original state space to derive a second-order Viterbi algorithm with. He also indicates

that extending the Viterbi algorithm to even higher orders, follows along the same

lines as the extension to second-order, but does not present such results. In a related

publication Kundu, He and Bahl (1988) report improved recognition of hand-written

words, using this algorithm to restrict the available letter combinations.

Kriouile, Mari and Haton (1990) extend the available techniques by deriving an

extended Baum-Welch re-estimation algorithm specific to second-order discrete

HMMs. They compare the use of first-order versus second-order HMMs in an isolated

digit recognition experiment. The popular “ left to right, one state skip” topology was

used for each digit model. Doing the tests in multi-speaker mode, they were able to

decrease the recognition error by 75% by using second-order HMMs (From 96% to

99% accurate). In speaker-independent mode they also obtained slightly better results

(91% to 93% accurate). They also demonstrate a third model termed as a “transition

equivalent model” . This model, which is not as accurate as their second-order models,

has a transition structure similar to that obtained using our ORder rEDucing (ORED)

algorithm (to be detailed in Section 2.3).

In a series of papers, second-order HMMs were next applied to continuous speech

recognition (Mari & Haton, 1994; Mari, Fohr & Junqua; 1996; Mari, Haton &

Kriouile, 1997). They focus on the enhanced duration modelling capabil ities of these
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models as primary factor in their enhanced performance, pointing out similarities4

with Ferguson models (Ferguson, 1980). The self-loops on first-order HMM states are

poor duration models, allowing the occurrence of singular state alignments when

observations are matched to the wrong model. The extra time step available in the

state history of second-order HMMs avoids this difficulty for one additional time step,

thereby preventing such singular state alignments. Using second-order HMMs to

recognise letters in a continuously spelled name task, Mari et al. (1996) slightly

improve the accuracy compared with the use of first-order HMMs. Also in a

continuous phoneme recognition task, they show a slight improvement. From our own

experience (Du Preez, 1991a) we can confirm the advantages of employing better

duration modelling in continuous recognition tasks. We do, however, believe that

explicit duration modelling (Levinson, 1986) is a viable alternative to bringing the full

power of higher-order HMMs to bear on this problem5.

This viewpoint is confirmed by Mari et al. (1994, 1997) in an experiment on

connected digit recognition. Although in a direct comparison, the second-order

HMMs improve on the results from first-order HMMs, this is no longer the case when

the first-order model employs durational postprocessing. These papers are the first

that we are aware of that mention the concept of a first-order HMM that is equivalent

to a second-order HMM. This order reduction is based on mapping the original states

into a twofold Cartesian product of states (compare Figure 1-2 with Figure 1-3 for an

                                               

4 High-order HMMs are much more powerful than Ferguson models. They can however be constrained
to produce Ferguson models. Section 2.5 deals with this and other useful topologies.
5 We do however find the relationship between high-order HMMs and duration modell ing, intriguing
and devote Section 2.5.2 to its discussion.
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example). This is a very intuitive notion, also noticed by Howard (1972, p. 4) in the

context of Markov chains. No formal algorithm6 is, however, given in any of these

references. After illustrating such a first-order equivalent for a three-state left-to-right

second-order HMM, Mari et al. favour extending the Viterbi and Baum-Welch

algorithms to second-order over using first-order equivalents. As reason for this they

motivate that the latter dramatically increases the number of states.

To summarise, previous work (He, 1988; Kriouile et al., 1990; Mari et al., 1994,

1996, 1997) focused on extending algorithms for processing second-order HMMs.

Although the authors indicate that extension to algorithms for HMMs of order higher

than two will follow a similar pattern as the extension to second-order, no such

algorithm is presented. Although they are aware of the possibil ity of reducing second-

order HMMs to equivalent first-order models, on the grounds of the resulting increase

in the number of states, they prefer rather to use algorithms specifically extended to

second-order.

1.6 Overview of this research

This section provides a high-level summary of the work done in this research. The

discussion wil l focus on the main concepts and issues, details and motivations are

reserved for discussion in later chapters. Chapters 2, 3 and 4 closely follow the

research objectives set out in Section 1.3 namely a unifying perspective, efficient

implementation and practical applicabil ity. The following three subsections outline

these chapters.

                                               

6 As we shall see in Section 2.3.1, such an algorithm involves quite a few intricacies.
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1.6.1 The ORder rEDucing (ORED) algorithm

In Figure 1-2 the second-order transition probability ijka describes the probability of

making a transition to state k given that the current state is j and the previous one was

i. First-order transition probabil ities like jka  involve only the two states that are joined

by them. In contrast, the second-order dependence of ijka  on state i, cannot be inferred

from its adjoining states but is only encoded in the subscripts of the transition

probability itself. Let us now create a new model with states corresponding to pairs of

linked states from the original model, as is illustrated in Figure 1-3. Each state shares

the same pdf. as the second one of the original pair of states does. Transition

probabilities are inserted between the states that respectively match the first and the

last two subscripts of the transition probability e.g. ijka  is inserted between states (i,j)

and (j,k).

h,j
fj

j,k
fk

ahjk

a ijki,j
fj

Figure 1-3. Mapping the original states of Figure 1-2 into their twofold Cartesian
product implicit ly adds one extra step of state history to the model.

Now the indexes of the states adjoining the second-order transition probabil ity fully

describe the subscripts of this transition probabil ity. This effectively means that we

can now interpret ijka  as a first-order transition probabil ity joining states (i,j) and (j,k).

By enlarging the number of states in the way we did, we were able to reduce

effectively the order of the model by one, without losing any representational

capability. This simple observation forms the basis of the ORder rEDucing (ORED)
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algorithm, which is detailed in Section 2.3.1. If we are able to reduce a second-order

model to a first-order model, it should also be possible to do so for models of higher

order. Section 2.3 confirms that this is indeed so. An il lustration of this process is

given by the third-order HMM of Figure 2-12 (p. 46) which is reduced to an

equivalent first-order version given by Figure 2-14 (p. 47). However, the proper

handling of higher orders, initial conditions (the first transition in the model by

necessity is of first order) and the desire to process models of mixed-order, introduce

quite a few intricacies to the algorithm that are not evident from the intuitive notion

on which it is based. These complexities are detailed in Chapter 2.

Although related to the above literature, this approach differs in fundamental respects.

Instead of increasing the order of specific algorithms to specific orders (only second-

order in the literature), this algorithm reduces all higher-order HMMs to equivalent

first-order versions. This has a number of important implications. These are now

outlined:

On a practical level this allows the application of any standard HMM algorithm to

any higher-order HMM, greatly enhancing the usefulness of this technology.

Although concerns were expressed about the effect the increase in the number of

states might have (Mari et. al, 1994, 1997), we show in Section 2.6 that it does not

contribute in any way to additional computational requirements.

On a theoretical level, it provides a unifying paradigm for reasoning about HMMs of

any order because it makes the relationship between HMM topology and HMM order

explicit. Using this insight, HMMs can be designed using higher-order specifications

and then reduced to make its topology explicit using a first-order equivalent model.
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For example, in Section 2.5.2 we present a mixed order model that constrains higher-

order transition probabil ities to specifically model state repetitions (duration),

irrespective of past history, while restricting the transitions between distinct states to

first-order (see Figure 2-15 p. 49). This results in a Ferguson model (Ferguson, 1980)

as its first-order equivalent (Figure 2-16 p. 49). This topology plays an important role

in later work. In Section 2.5.3 we develop the natural counterpart of the above

duration model. We design a model that is guaranteed always to take a fixed context

of distinct prior states into account irrespective of their possible repetitions (see

Figure 2-18 p. 51 for a simple example, with its first-order equivalent shown in Figure

2-19 p. 52). This mixed order model has enhanced capabil ities for modelli ng

sequences of distinct states and also plays a key role in later work.

1.6.2 The Fast Incremental Training (FIT) algorithm

As already mentioned, high-order HMMs can be vastly more expensive than their

first-order counterparts. The processing and memory requirements are serious issues

that can easily place such a model outside the available computing capacity. Typically

though, the transition structure of a high-order HMM is quite sparse. Because it may

be diff icult to tell, prior to training, which transitions will be redundant, training

normally commences with all the transitions that are potentially useful. For many

problems considerable training effort is therefore expended on estimating parameters

that will eventually become zero. Referring back to Figure 1-1 and Figure 1-2, it will

be realised that a single transition probabil ity in the lower-order model, is simply

being replaced by a set of refined probabilities in the next higher-order model. It will

result in significant savings if the training of redundant sets of higher-order

probabilities can be avoided by noting which corresponding lower-order probabil ities
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are zero. This observation forms the basis of the Fast Incremental Training (FIT)

algorithm, detailed in Section 3.2.2 and summarised below:

1) Set up a first-order HMM for the application at hand.

2) Run the training algorithm on the first-order model. Non-viable transitions will

disappear.

3) Convert the optimised first-order model to a second-order model by expanding the

subscripts of the remaining non-zero transition probabilities with one extra prior

state. These expanded transition probabilities are initialised with the value of the

lower-order transition probability they were extended from.

4) Use the ORED algorithm to create a first-order equivalent of this model.

5) Now, by repeating the algorithm from step 2, train this model. This will refine the

transition probabil ities to their required higher-order values. Repeating this

process trains successively higher-order models.

The above formulation is geared towards training fixed-order HMMs. In Section 3.3

we also extend it to include certain useful mixed-order topologies. Specifically, we

can also eff iciently train the duration models of Section 2.5.2, the context models of

Section 2.5.3, or any combination of them, by using the FIT algorithm.

Because the FIT algorithm does not utilise the same initial conditions7 as models

trained via extended  algorithms or the  ORED reduction8, local optima may cause the

trained models to vary. In Section 3.5 we use well-controlled simulation experiments

                                               

7 They cannot since they do not even have the same number of initial parameters.
8 We will refer to these (equivalent) approaches as the extended/ORED approach.
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to investigate the quality of FIT models relative to that of the extended/ORED

approach. Subsequent work on real speech (see Section 4.6) confirms the results in a

real-life situation. We find that, not only is the FIT approach much more efficient (up

to an order of magnitude faster), but it also results in much more compact models that

generalise better to unseen data.

1.6.3 Practical application to language recognition

To show that the concepts developed in Chapters 2 and 3 are indeed applicable to

non-trivial real-li fe situations, we apply them to automatic language recognition in

Chapter 4. Our ALR system distinguishes itself from most others (see Section 4.2 for

ALR literature) in that it requires no transcription of the training database, making it

much easier to expand to new languages. Two sets of experiments were conducted.

Common aspects like the database, signal processing and training procedures, are

discussed in Sections 4.3 to 4.5.

The first set of experiments (Section 4.6) was concerned with verifying the results of

the simulation experiments of Chapter 3. To do this, sixteen-state ergodic HMMs of

second- and third-orders were trained on English and Hindi speech9 using both the

extended/ORED and the FIT approaches. A first-order version served as baseline

reference. The results confirm those of the simulations of Chapter 3. For example,

training a third-order FIT model requires 13% of the memory, and 7% of the CPU that

would be expended on extended/ORED training. The resultant FIT model is twenty

                                               

9 From the OGI-TS database, kindly supplied to us by the Oregon Graduate Institute.
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times smaller and yields an accuracy of 97.4% compared to the 89.7% of its

extended/ORED counterpart.

In a second set of experiments (Section 4.7) we applied some of the explicit duration

and context modelling mixed-order HMMs, as well as combinations of them, to the

ALR task. All training is performed via the FIT algorithm. All the topologies have

been proved to be practically viable. Duration modelling proved useful throughout.

Modelli ng a context of distinct states is promising, but appears to require larger

training databases. This can be explained by noticing that this model wil l reflect

longer state histories than a normal fixed-order model will, thereby increasing the size

of the required database. Due to the limited test set, statistically significant differences

were only detected between the baseline first-order model and several of the higher-

order models.

When we compare our ALR approach to others (see Section 4.8) we find that it is

better than previous systems not requiring transcriptions (Lund, Ma & Gish, 1996),

and very competitive when compared to currently popular systems based on phoneme

recognition followed by N-gram modell ing (Zissman, 1995a; Kadambe &

Hieronymus, 1995). This is achieved in spite of the fact that many obvious

enhancements can be applied to our ALR system (see Section 4.9).

1.7 Contribution of this work

1) Although the intuitive notion of reducing high-order HMMs to first-order

equivalents is not new, it has never been formalised before. The ORED

algorithm:
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a) provides a precise and verified description of the order reduction process

which is rather more intricate than what the underlying intuitive base would

suggest;

b) includes mixed order models for which the notion of a first-order equivalence

is new;

c) allows any higher-order HMM to be processed by using first-order algorithms;

d) provides a unifying viewpoint creating a common framework in terms of

which HMMs of all orders can be considered;

e) makes the interplay between Markov order and HMM topology explicit;

f) makes it possible to design HMM functionality using higher-order

descriptions, afterwards reducing it to the appropriate first-order topology. We

il lustrate this with duration and enhanced contextual models.

2) Based on the ORED algorithm we develop the FIT algorithm which:

a) greatly reduces the computational requirements for training high-order HMMs

by training incrementally while avoiding redundant parameters, thereby

making the training of large systems practical.

b) results in much smaller10 models, thereby reducing the computational

resources required for applying it;

                                               

10 Fewer non-zero transition probabiliti es, making it more compact.
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c) makes the resultant models less susceptible to specialising on the training data;

prior to this work specialisation in higher-order HMMs received no attention

in the literature;

d) accommodates certain well-defined mixed order topologies;

e) provides a flexible framework for applying combinations of various

enhancements such as independently controlling the context of distinct states

and the degree of duration modelling used.

3) In the field of automatic language recognition we show that:

a) high-order ergodic HMMs do produce competitive ALR systems that require

no training database transcriptions;

b) high-order HMMs can be used to design topologies that are well suited to the

phonotactic constraints utili sed in ALR systems;

c) these topologies can be efficiently training via the FIT algorithm.
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Chapter 2  High-order hidden Markov models

2.1 Introduction

Hidden Markov theory forms the backbone of modern speech processing systems

(Young, 1996) and has been thoroughly investigated for a very wide range of

applications. In spite of this, very little literature exists on the use of the more

powerful second- and higher-order HMMs. A few extensions of the standard first-

order analysis and training algorithms to their second-order versions are known (He,

1988; Kriouile, Mari & Haton, 1990). Literature on third or higher-order models is

non-existent.

The main purpose of this chapter is to introduce and motivate the ORder rEDucing

(ORED) algorithm. This algorithm can transform any higher (fixed or mixed) order

HMM to an equivalent first-order version. As such it plays a unifying role for HMMs

of all orders and will play an important role in making this technology accessible to

general speech processing and other applications.

The necessary HMM background is created in Section 2.2. Notation, assumptions,

standard algorithms and their complexity are discussed. Section 2.3 introduces and

proves the ORED algorithm. Its use is illustrated in Section 2.4 with several examples

designed to enhance understanding the process. Section 2.5 shows how the application

of the ORED algorithm can put interesting topologies in a new perspective. It also

introduces two new concepts namely the context order and the duration order, which

serves to ill uminate the capabil ities of high-order HMMs. In Section 2.6 the existing

literature on higher-order HMMs is examined from the viewpoint of the ORED
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algorithm. Some very real problems in high order hidden Markov modelling are

highlighted in Section 2.7.

2.2 HMM background

We now introduce the notations, conventions and mathematical preliminaries required

for presenting, proving and demonstrating subsequent algorithms.

2.2.1 Definition and notation

},,,{ 211 L
L xxxxX �� �=  is an observation sequence or string of length L , which

must be matched to the HMM. An HMM M  is defined as a set of N  conventional

emitting states, as well as an initial and terminal state that are so-called non-emitting

or null states, yielding a total of N + 2 states. The symbols S  and Q are variables

taking on the index value of the state under consideration. In normal HMMs this index

value wil l be a scalar, such as Q i=  (single indexed). In the transformed models

developed in this chapter, composite values such as Q i j= ( , )  (composite indexed)

will be used for intermediate indexing (see Section 2.3.1 p. 33). This composite

indexing is used to track state histories. Subscripts are used to specify the time at

which a certain state occurs. An expression such as S  j� = will i ndicate the

occurrence of the j th state at time 
�

. A sequence of states occurring from time m up

to time n  will be denoted by Sm
n . Time indexes lower than 1 or higher than L  are not

associated with physical time as is measured by the indexes of the observation string,

but rather indicate null states preceding or following the input string.

States are coupled by transitions, each with probabil ities describing its likelihood of

occurring. The initial state will have no transitions entering it and the terminal state
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will have no transitions leaving it. Transition probabilities are indicated by the symbol

a , with subscripts to index the states involved. To distinguish between the transition

probabilities of the original higher-order models and its transformed equivalents, a

prime (′) symbol is used for the former. For example, ′aij k  is the symbol used in the

original second-order HMM to indicate the probabil ity of moving from state j  to

state k , given that the preceding state was i .

Different states may share a set of transition probabilities (Bahl, Jelinek & Mercer,

1983). This will be referred to as tied transitions, and simply means the transition

probabilities leaving from each of these states will be identical to that of every other

state that it is tied to.

Each emitting state11 S  has an associated probability density function (pdf.)

f( | , )x S M  which quantifies the similarity between a feature vector x and the state S .

For brevity, the i th pdf. will be identified as f i  in the diagrams. The null states,

indicated in state diagrams by dashed circles, do not have pdf.s associated with them.

Transitions to them do not consume a time-step; this makes them useful tying points

for groups of states, enabling the use of single initial and termination states whilst

maintaining the functionality of the multiple case. This simpli fies the representation

by making the customary inclusion of extra parameters to indicate multiple initial and

termination states unnecessary. It should also be pointed out that, since no time step is

needed to enter the first state (state 0 in the diagrams), the process initially (already)

                                               

11 Another variant of the HMM exists which associates the pdf.s with the transitions instead of the
states. This is termed the Mealy form whereas the version we describe and use throughout this work is
the Moore form (Deller et. al, 1993, p. 680). It is possible to transform from one form to the other.
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occupies that state. This is contrary to the more conventional case where it is entered

only at the first time step.

In the following discussion, extensive use will be made of states that share pdf.s (Bahl

et al., 1983; Lee, 1989). This will be referred to as tied pdf.s. When states share both

their transitions and their pdf.s, we will refer to them as tied states.

Some reflection will indicate that when states are tied, and the tied transitions leaving

from each of them also share a common destination state, those tied states can be

replaced by a single state without affecting the operation of the model. We wil l term

this operation a merging of states. (The example in Appendix A demonstrates this.)

2.2.2 HMM assumptions

The match between X1
L  and M  is quantified by the likelihood f( | )X1

L M . To make

the calculation of such a quantity tractable, certain simpli fying assumptions are

necessary:

AS.1) The observation independence assumption states that

f( | , , ) f( | , )x X x�
� �

� �
1

1
0

− =Q M Q M . (2-1)

This means that the likelihood of the 
� th feature vector is dependent only on the

current state and is therefore otherwise unaffected by previous states and feature

vectors. This assumption is not affected by the order of the HMM.

AS.2) By definition, an HMM includes the Markov order assumption

P Q Q M P Q Q MR( | , , ) ( | , )�
� �

� �
�

0
1

1
1 1− −

−
−=X , (2-2)

where R is known as the order of the HMM.
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This assumption states that any states or features, other than the identity of the

immediately preceding R states, do not affect the probability of occurrence of the

next state.

The vast majority of applications use R=1, resulting in a first-order HMM (HMM1)

of which an example is shown in Figure 2-1. The probability of jumping to a specific

state at the next time step is dependent only on the state that is being occupied at the

current time. Therefore, only a single transition probabil ity occurs on the link between

any two states. These probabil ities are often presented as a matrix, and algorithms

used to calculate the required likelihood need to keep track of only the behaviour of

states one time step earlier (Poritz, 1988).

0
1
f1

a11

2
f2

a 22

3
f3

a 33

4
a01 a12 a23 a34

a 13

Figure 2-1. Base HMM1. The pdf. if describes features associated with state i.

Since a transition to a next state is dependent only on the current state, more subtle

restrictions on the allowable combinations of states are not effectively modelled

(He, 1988). In addition, the self-loops on the emitting states are poor duration models

in most practical applications (Levinson, 1986). The richer modelling capabil ity

resulting from increasing the order of the model, can mitigate these diff iculties (He,

1988; Mari et al. 1997). In Figure 2-2 the second-order version (HMM2) of the

previous example is given. More precise modelling is now possible, but it comes at

the cost of an increased number of transition probabil ities. Note that, unlike the

HMM1, both the previous and the current state determine the correct choice amongst

the number of alternative probabil ities on a given transition. Typically these
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probabilities are represented in a cubic structure, and the calculation of )|f( 1 MLX

requires specialised algorithms to track the longer history of states (Kriouile et al.,

1990).

0 1
f
1

a'011
a'111

2
f
2

a'122
a'222

3
f
3

a'133
a'233
a'333

4
a'01

a'012
a'112

a'123
a'223

a'134
a'234
a'334

a'013
a'113

Figure 2-2. Second-order version of the HMM in Figure 2-1.

By extending the value of R to even higher values, a longer history of states can be

taken into account, resulting in a Rth-order model (abbreviated HMMR). If the order

of the probabilities on any transition is allowed to vary, a mixed-order HMM results.

In following sections, a (possibly) mixed-order HMM with highest order R  is

referred to as M R , where R  is the highest order transition probability present in the

model, be it of mixed- or fixed-order.

2.2.3 Standard HMM algorithms

There are several excellent sources describing the mathematics and algorithms

applicable to HMM1s (Rabiner & Juang, 1986; Levinson, 1985; Bahl et al., 1983;

Poritz, 1988; Picone, 1990; Deller et al., 1993). Relevant aspects of this work are

highlighted here.

Three principle issues are distinguished in HMM processing, namely the evaluation

problem, the decoding problem and the training problem. The evaluation problem

concerns itself with how to determine the match between the observations L
1X and the

model M using the likelihood f( | )X1
L M . Determining the single most likely state
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sequence accounting for L
1X  is the domain of the decoding problem. Lastly the

training problem is concerned with optimising the parameters of the model based on

the observations.

HMM processing is made non-trivial due to the “hidden” part indicated in its name.

Many different state sequences can account for a set of observations, but with varying

degrees. One approach for solving the first two problems would be to enumerate all

possible sequences of states 1
0

+LQ . Determining for each sequence the value of

)|,f( 1
01 MQLL +X  and then summing over all of them wil l solve the evaluation problem.

The single sequence that provides the biggest contribution will solve the decoding

problem. Unfortunately the number of possible sequences is proportional to LN ,

making this approach intractable. Using the assumptions discussed in the previous

section, this problem can be simpli fied as we now discuss.

2.2.3.1 First-order solutions

Using the observation independence assumption (AS.1) and setting the Markov order

1=R  allow the introduction of an (intermediate) forward variable

)|f()( ,1 MjQj == �
�

� Xα , as well as a related backward variable )( j�β . The

advantage of doing this is that these variables can be efficiently calculated from their

previous values (Rabiner & Juang, 1986)12.

                                               

12 Only the general (iterative) expressions for the emitting states are considered here. Boundary
conditions, described by additional supplementary expressions are omitted, as they do not contribute to
the current discussion.
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 0,),|f(])([)(
1

0
111 ≥== ∑

+

=
+++

�
����

N

i
ij MjQaij xαα (2-3)

0,),|f()()(
1

0
111 ≥== ∑

+

=
+++

�
����

N

j
ij MjQaji xββ .

This drastically reduces the computation required as compared to the approach of

enumerating all state sequences. Consider, for example, the operations involved in

calculating all the forward variables for a fully connected (ergodic) HMM with a

separate pdf. on each of the emitting states. The total number of operations involving

transition probabil ities is proportional to LN 2  while the number of pdf. calculations,

as well as the memory required to store the forward variables, is proportional to NL .

Either the memory requirements, or the pdf. calculations, can be avoided for the

backward variables; the number of operations involving transition probabilities is

similar to that of the forward variables.

From these forward and backward variables the evaluation problem is solved using

the forward-backward algorithm, details of which may be obtained from Rabiner and

Juang, (1986). Replacing the summation of (2-3) with maximisation results in

considering only the most likely state sequence. This is formalised in the Viterbi

algorithm, which solves the decoding problem. Training can be accomplished by

iteratively using either the forward-backward or the Viterbi algorithms to find the

current match between the observations and the model. The parameters of the model

are then updated accordingly. These training procedures, termed Baum-Welch re-
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estimation and Viterbi re-estimation13, are applications of the more general

expectation-maximisation (EM) algorithms (Dempster, Laird & Rubin, 1977) used for

optimising statistical models. These techniques guarantee an improvement on each

iteration. Unfortunately, the solution it converges to may only be a local optimum. A

good tutorial on the EM algorithm is provided by Moon (1996).

2.2.3.2 Higher-order solutions

Algorithms extending the Baum-Welch and Viterbi approaches to HMM2s, have been

reported in literature (He, 1988; Kriouile, Mari & Haton, 1990) As in the first-order

case, the forward and backward equations play a central role. The general form of the

second-order forward equation is given by (the backward equations follow a similar

pattern):

1,),|f(]),([),(
1

0
111 ≥== ∑

+

=
+++

�
����

N

i
ijk MkQajikj xαα (2-4)

Although no reference could be found to HMMs with orders higher than two, such

extensions are straightforward:

1,),1|f(]),,([),,(
1

0
11,,211321

1

121
−≥+== ∑

+

=
++++ +

RMRQaiiiiii
N

i
iiiRR R

�
�� ����� xαα (2-5)

The algorithms utilising these variables can be extended to accommodate the higher

dimensional structures. As these higher dimensional structures may be quite sparse, it

is important to implement measures to avoid redundant calculations (Mari, Haton &

                                               

13 Since the training process often needs extensive quantities of data, the faster Viterbi re-estimation
algorithm was used in this work.
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Kriouile, 1997). It is clear that processing higher-order HMMs can be very expensive.

For example, in higher-order ergodic HMMs the number of transition calculations are

proportional to LN R 1+  and the memory required to store the forward variables is

proportional to LN R . The pdf. calculations are unaffected by the HMM order.

2.2.4 Different types of HMMs

We now discuss dimensions on which we distinguish between different types of

HMMs. We do not intend to provide a full taxonomy; new models are evolving

continually. The discussion wil l be brief, with references for further investigation.

There are three main sources which give rise to different HMM variants, namely the

state pdf.s, the topology of the model (the structure dictating which states are coupled

to which) and the Markov order of the state transition probabilities.

1) Most variants find their origin in the type of pdf. used. Table 2-1 lists some

examples. In this research we are not concerned with pdf. variants and thus restrict

ourselves to continuous (diagonal Gaussian) pdf.s.

2) The ultimate application of an HMM often determines its topology. Phoneme and

word models often use a left to right form (see Figure 2-1 on p. 22, also Young,

1996). Early language recognition systems employed a ergodic HMM (see Figure

4-1 on p. 92, also Savic, Acosta, & Gupta, 1991). When duration modelling is

important, Ferguson models can be used (see Figure 2-17 on p. 50, also Ferguson,

1980). One of the contributions of this research, is to show that some ad hoc

topologies are, in reality, the end-result of designs using higher-order HMM

specifications.
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3) The final factor we consider is the Markov order of the model e.g. first-order,

second-order etc., (see Figure 2-12 on p. 46, also Mari et al., 1997). We have

already stated that the Markov order and the topology are related. The ORED

algorithm, to be discussed in 2.3.1, provides a mechanism to reduce a high-order

HMM to an equivalent first-order HMM, thereby making its topology explicit.

Combining the above gives rise to diverse models such as (for example) a second-

order ergodic semi-continuous HMM.

Table 2-1. HMMs with different pdf. types.

Density Type HMM Type Reference
Discrete Discrete Rabiner, Levinson & Sondhi, 1983.
Continuous Continuous Juang, 1985.
Continuous mixture Mixture density Juang & Rabiner, 1985.
Tied mixture Semi-continuous Huang & Jack, 1989.
Neural approximation Hybrid Bourlard & Wellekens, 1990.

2.2.5 Related concepts: Markov chains and N-grams

Markov chains and N-grams are concepts with a close relationship to HMMs. The

former is frequently used in statistical modell ing (Leon-Garcia, 1989), while the latter

is currently very popular as the language model in large automatic speech recognition

(ASR) systems (Young, 1996). Although higher-order versions are possible, Markov

chains are mostly used in their first-order version. N-grams, on the other hand, are

specifically popular in their higher-order forms. As we will soon see, they actually

represent the same concept and are a degenerate case of the HMM. To put the work

on higher-order HMMs here in proper perspective, it is important to understand these

relationships.
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2.2.5.1 Markov chains

If, in an HMM, we completely ignore the notion of feature vectors and pdf.s

describing them, but instead focus only on the random state changes in the model, the

model would function as a Markov chain (Howard, 1971; Leon-Garcia, 1989, p. 437;

Deller, Proakis & Hansen, 1993, p. 682). In an HMM, the activity of this underlying

Markov chain is obscured (hidden) by another stochastical process, namely the pdf.s

that produce the observations. At first glance it would seem that the presence of the

pdf.s in the HMM is the determining factor in making it “hidden”. The presence of the

pdf.s transforms a “singly” stochastic process (Markov chain) into a “doubly”

stochastic process (HMM). There is a caveat though. As can be seen from Figure 2-3

and Figure 2-4, any discrete HMM (see Section 2.2.4) can be written without any

explicit pdf.s.

0
1
f1

2
f2

3
a 01 a 23

a 02

a 13

f2  = [P 2u , P 2v ]

f1  = [P 1u , P 1v ]

a 12

a 21

Figure 2-3. Discrete HMM.

The difficulty with interpreting Figure 2-4 as a Markov chain is that the observation

symbol u is associated with both states (1,u) and (2,u). Similarly v is associated with

both (1,v) and (2,v). With Markov chains the states of the model can be directly

observed from its output. In the given example this is clearly not possible.
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1,v
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2,u

a
01 P

1v
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a 12P 2u

a 21P 1u

a 12P 2v

a 21P 1u

a 12P 2v

a 21P 1v

a 12P 2u

a 21P 1v

Figure 2-4. Discrete HMM without pdf.s.

Overlapping pdf.s lead to ambiguities in the chain, which is now the form in which

the hidden part of the HMM emerges. Any Markov chain can be represented as an

HMM, but then the pdf.s will not overlap. Stated differently, any HMM with non-

overlapping pdf.s is not really a hidden Markov model.

2.2.5.2 N-grams

In automatic speech recognition (ASR) research, so-called “N-grams” are quite

popular as language models (Bahl, Jelinek & Mercer, 1983; Levinson, 1985; Riccardi,

Pieraccini & Bocchieri, 1996). The function of these language models is to dictate (or

restrict) the allowable sequence of words, thereby reducing the perplexity14 of the

total recogniser. A tri-gram specification, for instance, wil l provide probabilities

),|P( jikijk wwwp =  where kji www ,,  is a sequence of successive words. These N-

grams have some interesting associations (Levinson, 1986):

                                               

14 A measure related to entropy, describing the average “branching factor” (number of choices) at each
decision point. It quantifies the diff iculty of the task. See Bahl, Jelinek and Mercer (1983) for details.
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1) Clearly, if there was no uncertainty about the identity of the fundamental units

under consideration (words in the above case), these N-gram word orders could be

specified via a higher-order Markov chain. However, the N-gram language model

is often integrated with lower level HMMs to form a single, large, monolithic

HMM.

2) Both HMMs and N-grams are instances of stochastic regular grammars (Chomsky

type 3 grammar).

The first point deals with the relationship between Markov chains and discrete hidden

Markov models, something we have already discussed in the previous section. If the

category identities (words in this case) could be determined with absolute certainty,

the ambiguity and hence “hidden” aspect disappears, resulting in a Markov chain. In

an ASR system, however, the word identities are uncertain. The N-gram probabilities

in this context are merely replacements for the actual probabilities coupling these

more nebulous categories. Their estimation is based on external deterministic

knowledge (via counting and interpolation techniques) and not on the actual

probabilistic categories within the system.

The second point above is just a restatement in alternative terms of the first point.

Without digressing too far afield into the theory of stochastic grammars (Fu, 1982;

Schalkoff, 1992), it can be said that an N-gram results in an unambiguous stochastic

regular grammar, whereas an HMM generally results in an ambiguous one. This

makes an N-gram a special degenerate case of the HMM. Although it can be

processed, using normal HMM techniques, the special requirements of the “hidden”

part of the HMM in reality is not necessary. If HMM forward-backward re-estimation

is used to infer N-gram probabil ities, only one state sequence is viable for any
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observation sequence. From this, the re-estimation reduces to a simple counting

procedure (Bahl et al., 1983). In contrast, for a general HMM this information is only

known in probabilistic terms, calling for more involved processing. Deller et al.

(1993, pp. 784-785) reflects on the relationship between stochastic regular grammars

and N-grams, but fails to take into account the role that ambiguity plays.

2.3 Reducing a high-order to an equivalent first-order HMM

Instead of finding algorithms for HMMs of different orders, the following algorithm

will transform any (mixed- or fixed-order) HMM to an HMM1 that is mathematically

equivalent to the original. Proof of this equivalence is given in Section 2.3.3. The

underlying (and quite intuitive) idea is to map the states of the original HMM MR ,

using a twofold product of the original state space, to a reduced model MR−1 .

Transitions in this new state space implicitly have an extra time step of state history

specified, thereby reducing the order of the transition by one.

The basic notion is not new, Howard (1971, p. 4) writes in the context of standard (not

hidden) Markov processes that “… suppose that the last two states occupied both

influenced the transition to the next state. Then we could define a new process with

2N  states – each state in the new process would correspond to a pair of successive

states in the old process. …Any dependence of future behaviour on a finite amount of

past history can, at least theoretically, be treated in the same way. ” The next section

though, makes this notion concrete with an explicit algorithm, while at the same time

extending it to hidden Markov models. As will become evident, there are several

subtleties that arise during the actualisation of this basic idea.
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In the following discussion, states in MR  will be denoted by Q while the variable S

will be used for those in MR−1 . It will be assumed that MR  has N  emitting states,

augmented by initial and terminal null states, respectively denoted by Q = 0 and

Q N= +1. All the state indexes of MR  are assumed to be single (not composite)

values.

In Appendix A a detailed example is provided that illustrates the ORED algorithm.

Section 2.3.2 comments on the role of the different steps in the algorithm. Together

they are useful guides for studying this algorithm.

2.3.1 The ORder rEDucing (ORED) algorithm

1) Create the set of states of 1−RM :

a) Create the states 1,1,0 +=== NSSS �  in 1−RM . (Only 0=S  for

fixed-order)

b) For each of the available higher-order ( 2≥′R  with R′  the order)

transition probabil ities 
121 +′Riiia

�
 present in the model, add the states

),(),,(),,( 13221 +′′ RR iiiiii �  to 1−RM  without duplication.

c) If the terminal state Q N= +1 has transitions originating at more than

one state entering it and at least one of them is of higher order ( 2≥′R ),

create a new terminal null state S N= + 2.

2) Allocate transitions and their probabil ities:

a) First-order probabil ities 
21iia′ :

I f state ),( 21 iiS =  exists, identify all available states 1iS =  and

10,),( 1 +≤≤= NiiiS  as source states for the transition.
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The transition probabil ity 
21iia′  links each of them to

destination state ),( 21 iiS = , resulting in transition

probabilities of the form 
21211 ),( iiiii aa ′=  and 

21211 ),)(,( iiiiii aa ′= .

If there is more than one source state, their links are tied.

Otherwise it is placed from source states 1iS =  and ),( 1iiS = (as

defined above) to destination state 2iS = , resulting in

transition probabil ities of the form 
2121 iiii aa ′=  and

2121),( iiiii aa ′= . If there is more than one source state, their

links are tied.

b) Higher-order probabil ities 2,
121

≥′′
+′

Ra
Riii �

: These probabil ities

(one or more) are placed between states ),( 1 RR iiS ′−′=  and

),( 1+′′= RR iiS , that is 
12113221 ),(),)(,( +′+′′

′=
RRR iiiiiiiii aa

��

.

c) If a new terminal state 2+=NS  has been created, create a unit

probability transition between source states 1+= NS ,

)1,( += NiS  and destination state S N= + 2. That is

1)2)(1,()2)(1( == ++++ NNiNN aa .

3) Dead state removal:

Remove all states that cannot be reached from the initial state or from

which the termination state cannot be reached (typically an iterative

algorithm is used for this). Redundant null states can also be removed

at this stage (optional).
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4) Allocate pdf.s:

a) Every existing state ),( kiS =  and/or kS = shares15, via parameter

tying, the same pdf. as state kQ = . That is, they are both either

null states, or

),|f()),,(|f(),|f( 11 RRR MkQMkiSMkS ===== −− xxx .

b) If a new termination state 2+=NS  was created, it is a null state.

5) Iterate:

a) Rename all the composite state indexes to unique single indexes,

and modify the indexes in the transition probabil ities accordingly.

The resulting model is the 1−R th-order equivalent of the original

R th-order model.

b) All of the above steps can be repeated until all transition

probabilities are subscripted by only two state indexes. By

definition this is an HMM1. We show in Section 2.3.3 that it is

equivalent to the original higher-order model.

6) Merge states (Unnecessary for fixed-order HMMs):

Merge tied states that have the same destination for each of the shared

transitions. Renumber the states and transition probabil ity indexes to

reflect the smaller number of states.

                                               

15 If the Mealy form HMM was used, a separate pdf. wil l be associated with each transition probabilit y.
This greatly escalates the number of parameters in the model.
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2.3.2 Notes on the ORED algorithm

The states created in step 1a) are needed as the beginning and/or end points for certain

of the first-order transition probabil ities which occur in a mixed-order model. Step 1b)

creates the necessary states to ensure that one extra step of state history is made

explicit in the new model. Step 1c) ensures that the model wil l have a unique

termination state. This step is not strictly necessary, but results in a cleaner

representation.

Step 2a) inserts the first-order transition probabilities. When a first-order transition

probability 
21iia  shares a transition with higher-order probabilities, it is necessary to

duplicate the first-order probabil ity over the different contexts created to reduce the

order of the higher-order probabil ities. This spontaneously leads to states sharing

identical transition probabilities (so-called tied links). With fixed-order models no

such link tying should occur. Step 2b) now reduces the order of the higher-order

probabilities by one by inserting them between states specially created to “remember”

implicitly one extra time step. There can be multiple probabil ities associated with

each transition. The sequence 21 −′Rii �  is used to enumerate those probabil ities. Step

2c) reflects the desire to work with a single termination state and is included for a

cleaner representation. The null states leading to the termination state S N= + 2 are

actually superfluous and may be optionally eliminated.

It may happen that some of the new states are not in a path leading from the initial to

the terminal state (see Section 2.4.3). Step 3) eliminates them. Since the pdf.

associated with each state is not affected by the order of the model, step 4) must

ensure that the status quo is maintained in the new model. To make sure that the

model responds properly during training, replicated pdf.s must be implemented as



Chapter 2 High-order hidden Markov models 37

shared. With the previous steps in the algorithm having reduced the order of the

model by one, step 5) merely uses recursion to continue the process. Step 5a) does the

necessary renaming to get the new model in the notation16 assumed by step 1). Step

5b) is the actual recursion. Step 6) merges tied states that share the same transition

targets. This step needs to be done on the final first-order model, since what might

appear to be the same target state at one of the intermediate stages of the algorithm,

might at a later stage split into different states.

2.3.3 Proof that the ORED algorithm results in equivalent first-

order models

As can be seen from the above, the normal Rth-order model, and ORED first-order

version, contain the same free parameters in a different structure. The following

proofs show that any higher-order HMM RM  (fixed- or mixed-order) and its 1−RM

version which results from one iteration of the ORED algorithm, are mathematically

equivalent. Repeated application of the ORED algorithm therefore ultimately results

in an M1  equivalent to the original RM . In the following RM  consists of N  emitting

states, augmented by an initial and a terminal null state. It is also assumed that all of

the states of RM  lie somewhere on a connected path joining the initial state and

termination states. That is, we assume that there are no “dead” states in RM .

                                               

16 The use of single state indexes in the base model is only to keep the formulation simpler. Another
attractive alternative would be to use composite indexes indicating the applicable history of states
according to the order of the model.
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Definition: Any two models RM  and 1−RM  are defined as equivalent if

)|f()|f( 111 −= R
L

R
L MM XX  for any arbitrary observation sequence X1

L . In other words,

two models are only considered as equivalent if they yield the same likelihood,

regardless of the specific observation sequence.

Theorem 1: Consider any sequence of states

}1,,,,,0{ 1210
1

0 +=== +
+ NQQQQQQ LL

L � (2-6)

that may, with non-zero probabil ity, follow each other in RM . From this construct the

state sequence 1
0

+LS  for 1−RM :
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= − 11,
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QQ
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Then 1
0

1
0

++ ↔ LL SQ  forms a one-to-one mapping of all valid state sequences in RM  to

all valid state sequences in 1−RM .

Proof: Consider two successive states in this sequence namely
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 otherwise              

existsit  if    ),( 1

�
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Steps 1b) and 2) of the ORED algorithm allow for any of the four possible

combinations of 1−
�S  and �S . Since 

�
�

2−Q  lies somewhere on a connected path joining

the initial state and termination states of RM , step 2) of the ORED algorithm

guarantees that 
�
�

1−S  lies somewhere on a connected path joining the initial state and

termination states of 1−RM . Therefore, 1
0

+LS  is a valid sequence of states for model

1−RM . Furthermore, from the given construction, 1
0

+LQ  maps to a unique 1
0

+LS  and
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vice versa. Therefore 1
0

1
0

++ ↔ LL SQ  forms a one-to-one mapping of all valid state

sequences in RM  to all valid state sequences in 1−RM .
�

Theorem 2: The likelihood of an observation sequence X1
L  and a specific state

sequence QL
0

1+ in RM  is equal to the likelihood of X1
L and the associated unique state

sequence SL
0

1+  (defined in Theorem 1) in 1−RM  i.e.

)|,f()|,f( 1
1

01
1

01 −
++ = R

LL
R

LL MSMQ XX .

Proof:  Firstly, determine the likelihood using RM . Let �R′  be the order of the

transition from state 1−�Q  to state �Q . Using the definition of conditional probabil ity,

as well as the HMM assumptions (AS.1 and AS.2, p. 21), yields
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−
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Xx

XXx

XXX

(2-8)

The last factor on the right hand side of (2-8) is of the same form as the left-hand side.

Recursive application of this expression then yields:

.),|f(),|f(),|f()|,f( 1
0

2
22

1
11

1122
1

01 QRQRQRLLQR
LL aMQaMQaMQaMQ

R
L

LRL
L

LRL

′′′′=
′−′−

+
+′−+

+ xxxX � (2-9)

Let �R  be the order of the transition from state 1−�S  to state �S . Following the

development of (2-9), the likelihood given 1−RM  can be shown to be:

.),|f(),|f(),|f()|,f( 1
11

2
22

1
0

11221111
1

01 +
+−+−− −−−−

+ = L
LRL

L
LRLR SRLLSRSRSR

LL aMSaMSaMSaMS xxxX � (2-10)

It is now necessary to establish the relationship between (2-10) and (2-9). From (2-7),

and (2-10), the transition from state 1−�Q  to state �Q  (with probabil ity �
�� RQ

a
′−

′ )
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corresponds to the transition from state 1−
�S  to state �S  with probability �

�� RS
a

−
. From

step 2a) 1=′�R  implies that 1=�R  and �
�

�
�

�
�� 11 −−−

′==
QSS

aaa
R

. From step 2b) 1>′�R

implies that 1−′= �� RR  and �
��

�
�� RR QS

aa
′−−

′=  (this is the order reduction step). In general

therefore

�
���

�� RR QS
aa

′−−
′= (2-11)

From ORED step 4) it also follows that

),|f(),|f( 1 RR MQMS ���� xx =− (2-12)

Substitute (2-11) and (2-12) into (2-10) to obtain the required result

)|,f()|,f( 1
1

01
1

01 −
++ = R

LL
R

LL MSMQ XX .
�

Theorem 3: The likelihood of attributing an observation sequence to RM  is equal to it

being attributed to 1−RM .

Proof: Theorem 2 states that )|,f()|,f( 1
1

01
1

01 −
++ = R

LL
R

LL MSMQ XX , where the two

state sequences correspond as is defined in Theorem 1. It is also known from

Theorem 1 that for these two models there is a one-to-one mapping of such sequences.

Therefore

∑∑
++ ∀

+

∀
−

+ =
1

0
1

0

)|,f()|,f( 1
011

1
01

LL Q
R

LL

S
R

LL MQMS XX (2-13)

The respective state sequences that are summed, are mutually exclusive and cover the

whole sample space of such sequences (they thus form a partition). Therefore both

sides of (2-13) reduce to marginal pdf.s giving the required result:

)|f()|f( 111 −= R
L

R
L MM XX

�
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This result shows that the two models result in identical likelihoods. One iteration of

the ORED algorithm results in an equivalent model with order reduced by one.

2.4 Examples using the ORED algorithm

We now illustrate the ORED algorithm by means of examples. The example in

Section 2.4.1 below is chosen to illustrate several aspects of the ORED algorithm,

amongst others the use of both single and composite states, as well as the use of tied

states leading to state merging. Higher-order Markov models in general are prone to

subtle diff iculties, not so easily noticed when the model is represented in the

traditional way. The examples in Sections 2.4.2 and 2.4.3 ill ustrate this point with

simple models containing some inconsistencies. If undetected such inconsistencies

may hamper or even fatally flaw the HMM.

2.4.1 A simple mixed-order model

Figure 2-5 is a mixed-order HMM with a maximum order of three. The result of

applying one iteration of the ORED algorithm (up to step 4) ) is shown in Figure 2-6,

while the final equivalent HMM1 is in Figure 2-7. A detailed step-by-step exposition

is given in Appendix A.

0
1
f1

a'11

2
f2

a'122
a'1222

3
f3

a'233

4
a'01=1 a'12

a'123
a'1223
a'2223

a'134
a'234
a'334

a'13

Figure 2-5. A mixed-order HMM (maximum order 3).
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0
1 , 2
f2

2 , 3
f3

3 , 4

2 , 2
f2

a (1 ,2)(2,2)(2,2)=a' 1 2 2 2

1 , 3
f3

a 0 1=a' 0 1= 1 a 1(1,2)=a' 1 2 a (1 ,2)(2,3)=a' 1 2 3 a (2 ,3)(3,4)=a'2 3 4

a 1(1 ,3)=a'1 3

a (1 ,3)(3,4)=a'1 3 4= 1

a (1 ,2)(2,2)=a'1 2 2
a (2 ,3)(3,3)=a' 2 3 3

a (1 ,2)(2,2)(2,3)=a'1 2 2 3
a (2 ,2)(2,2)(2,3)=a'2 2 2 3

a (3 ,3)(3,4)=a' 3 3 4= 1

3 , 3
f3

1
f1

a 1 1=a' 1 1

Figure 2-6. Equivalent of Figure 2-5 with highest order two. The intermediate
composite indexing scheme is retained for easier reference to the algorithm.
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22
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a'13 a'
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4
f2

1
f1

a'
11

a'233

Figure 2-7. First-order equivalent of Figure 2-5.

There are a couple of points that one can easily miss when interpreting this model

from Figure 2-5; apparently states 1 to 3 allow self-loops. In reality it is only true of

state 1. As is evident from the associated pdf. indexes in Figure 2-7, state 2 allows a

maximum of two repetitions. State 3 allows only one repetition and then only under

the precondition that the previous state was state 2. Also, ignoring 01a′ , which is

obviously a unitary transition, it would appear from Figure 2-5 that there are twelve

other (free) transition probabil ities in the model. However, Figure 2-7 makes it clear
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that three further probabil ities are also unitary. Although all these facts could also be

gleaned by careful inspection of Figure 2-5, they are quite apparent in Figure 2-7.

2.4.2 Inconsistent transition probabilities

It is well known from HMM1 theory that the probabil ities of transitions leaving a

specific state should sum to unity. The same principle, of course, also holds for

higher-order transition probabil ities. In this case transition probabil ities leaving a

specific history of states should sum to unity. Recognising a violation of this principle

is, however, slightly more subtle with mixed-order versions, Figure 2-8 being a

(simple) case in point.

Implicit to the model is that 0012 =′a  (as it is omitted). To satisfy the requirement that

probabilities must sum to unity 1012011 =′+′ aa  must hold. This implies that 1011 =′a .

The first-order 11a′  implies17 a (hidden) second-order 111011 aa ′=′ . Therefore 1111 =′a .

Similarly, 1112111 =′+′ aa . From this follows then that 0112 =′a , thereby breaking the

only possible path to the termination state.

0
1
f
1

a'11

2
a'01 a'112

Figure 2-8. An inconsistent mixed-order model.

                                               

17 When a first order transition probabilit y is specified, its non-dependence on states earlier than the
current, simply means that all its higher order extensions are equal, thereby making their expli cit
specification redundant.
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When trying to find a first-order equivalent for this model, the inconsistencies become

explicit. Execution of the ORED algorithm shows that states 1 and (1,1) in Figure 2-9

should be tied. That implies that the two sets of transition probabilities originating at

them should be constrained to be identical. The two states, however, do not have the

same number of transition probabilities making it impossible to do this. In addition, it

is easily seen from this figure that 0112 =′a , thereby breaking the link to the

termination state.

0
1,1
f
1

a (1,1)(1,1)=a' 11

1,2
a01=a' 01=1 a (1,1)(1,2)=a' 1121

f1

a1(1,1)=a'11=1

Figure 2-9. First-order equivalent (still using the intermediate indexing scheme).
States 1 and (1,1) should have been tied, but they have a different number of

transitions.

2.4.3 Non-supporting transition probabilities

Another subtle flaw, that can be specified into higher-order HMMs (fixed or mixed-

order), occurs when the sequence of states presumed by a higher-order transition

probability is not supported by previously occurring transitions or vice versa. This

then results in sections of the model that are not on a path which joins the initial and

termination states. Such dangling sections will be removed by the pruning and, except

for the loss of some unusable parameters, are not necessarily a problem. If, however,

this section was a link on the only path joining the initial and termination states, a

“broken” model would result.

As an example, the model of Figure 2-10 apparently has eight free transition

probabilities. Figure 2-11, however, shows that, due to “dangling” state (2,2),

transition probabil ities 0122022 =′=′ aa . This again, in its turn, implies that
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1123023 =′=′ aa , ultimately leaving four transition probabilities of which only two can

be varied independently. This will certainly affect the modelling capabil ity of this

HMM.

0
1
f
1

a'11

2
f
2

a'022
a'122

3
a'01 a'12

a'023
a'123

a'02

Figure 2-10. A mixed-order model with dangling states.
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a 01 =a'01 a (1,2)(2,3) =a' 1 23

a 0(0,2) =a'02

a (0,2)(2,3) =a'023

a (1,2)(2,2) =a' 122

a 1(1,2) =a'12

2,2
f
2

a (0,2)(2,2) =a' 022

Figure 2-11. First-order equivalent (still using the intermediate indexing
scheme). Note the dangling state (2,2).

2.5 Interesting higher-order HMM topologies

In Section 2.5.1 we illustrate the topology resulting from applying the ORED

algorithm to a fixed order HMM. Such a model incorporates duration and context

modell ing. In Sections 2.5.2 and 2.5.3 we demonstrate topologies arising from special

high order models which distinguish between these concepts.
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2.5.1 Left to right HMM3 with one state skip

In this section the ORED algorithm is applied to the HMM3 of Figure 2-12. Figure

2-13 shows the resulting HMM2 equivalent to this model. The composite state

indexes have been retained for illustrative purposes.

0 1
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1
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a'0111
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f
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a'1223
a'2223

a'0134
a'1134
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a'2234
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a'2334
a'3334

a'013
a'0113
a'1113

Figure 2-12. Third-order left-to-r ight HMM.
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a' 1113

a'0133

a'1133

a'0134
a'1134
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a'1122

a'1233
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a' 1112
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a'2334
a'3334

Figure 2-13. Equivalent HMM218 for the HMM3 in Figure 2-12, using the

intermediate composite state indexing scheme.

In Figure 2-14 the equivalent HMM1 for this model is shown. As wil l be noted from

these diagrams, the resulting models have a rich structure. The role that the context of

                                               

18 If the first index is omitted in cases where a  has 3 and ′a  has 4 indexes, thereby leaving only
single probabili ties on each transition, this would also be the equivalent HMM1 for Figure 2-2.
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previous states plays in a given transition is explicit. Also note that the longest path

without self-loops in Figure 2-1 occupies three physical time steps19, six time steps for

the second-order model20 and nine time steps for the third-order model21. The shortest

paths, of course, do not differ from the original first-order model. This makes for

more precise duration modelling and is an alternative to often used phoneme models

such as Ferguson models (Ferguson, 1980) and the models used in the Sphinx system

(Lee, 1989, p. 55).
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a' 1134
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a'1233 a'2234a'0122 a'1123

Figure 2-14. The HMM1 equivalent to the HMM in Figure 2-12. The states of the
original model in Figure 2-12 correspond here to the set of states with the same

pdf. ( f i ).

                                               

19 states 1, 2 and 3 in Figure 2-1.
20 states (0,1), (1,1), (1,2), (2,2), (2,3) and (3,3) in Figure 2-13.
21 states 1, 2, 3, 5, 6, 7, 11, 13 and 14 in Figure 2-14.
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2.5.2 Duration modelling with high-order HMMs

In the previous section we saw that fixed-order HMMs model both context and

duration information. With the following example we want to ill ustrate a topology

arising from emphasising the duration modelling aspects of the model while

neglecting the contextual modelling that is not directly involved with the modelling of

the duration of a state. This type of modelling only involves states with self-loops. In

such a state we need to identify the sets of departing transition probabilities that share

the same destination and involve the same number of repetitions of this state. If all the

transition probabil ities in such a set are constrained to be identical regardless of prior

states, the resulting model will be focussed towards modelli ng the duration of this

state. This is formalised in the following algorithm.

Algorithm for a duration emphasised HMM:

1) Start with a fixed-order model of the appropriate order and topology.

2) For each state j with self-loops (i.e. has a jjiiijji D
D aa

121
1

1 −′
−′ ′≡′ �  with D′  the order of

the transition): all transition probabil ities 
1

1
1 +′

−′′
D

D jii
a  sharing the same destination

state 1+′Di , with the same number of repetitions of j preceding it, are constrained to

have an identical value.

3) States without self-loops: all transition probabil ities leaving from such states are

reduced to first-order.

This algorithm results in a mixed-order model. Since all higher-order transition

probabilities are only used to model the number of self-transitions, we will term

)max(DD ′=  the duration order. Transition probabilities not involved with duration

are restricted to first-order. As an example of this technique, Figure 2-15 applies these
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restrictions to the model of Figure 2-12. Reducing it to equivalent first-order via the

ORED algorithm results in Figure 2-16. In later work we will refer to the stacks of

states occurring in high-order duration models such as Figure 2-16, as duration stacks.
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a'013
a'0113
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Figure 2-15. Durational left to r ight HMM3 with one state skip. Note the shared
transitions which constrains Figure 2-12 to focus on duration modell ing.
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Figure 2-16. First-order equivalent of the HMM in Figure 2-15. Note the
similarity to Ferguson model shown in Figure 2-17.

Each duration stack functions as a type of super-state that enables duration modell ing.

The individual members in such a stack only differ from each other in the duration

information that they record via their associated transition probabil ities. Transitions

entering a stack are dependent only on immediately preceding stacks and not on
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earlier stacks, hence the context modelli ng is of first-order. Transitions internal to, or

departing from, a stack do not incorporate any information on the duration of prior

stacks. This is contrary to fixed-order models where both previous states and their

duration affect the duration of later states.

As can be seen from Figure 2-17, this diagram has a striking resemblance to the well-

known models used by Ferguson (1980) to model state duration. Reversing the

direction of this model while maintaining the original order of the pdf.s results in a

Ferguson model. Both model durations of up to three state repetitions explicitly

(without any self-loops). Longer state durations are (in both cases) modelled with an

exponentially decaying probabil ity. This gives them the same capacity for modelling

duration.
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Figure 2-17. Ferguson model of Figure 2-1 (with 2 time lags).

2.5.3 Context modelling with high-order HMMs

In certain applications, of which language recognition (Chapter 4) is an example, we

are more interested in a good specification of the sequence of distinct states that may

follow each other, and not so much in the duration of each state. This can be
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accomplished by constraining transition probabilities, only varying in the number of

repetitions of previous states, to be identical to each other. In other words, suppose we

want to model only the effect of the C different previous states on a given transition.

Let +i  indicate one or more occurrences of i. Constrain, via state tying, all transition

probabilities of the form 
121 +

++′
CCiiii

a
�

 to have the same value. This is an interesting

mixed-order topology. While the maximum order is infinity, a context-order C may

be identified. Due to the heavy sharing of parameters, this topology can still be

implemented in a finite structure. Figure 2-18 provides an example of this by applying

this technique to the structure of Figure 2-12. Due to the infinite HMM order, this

example is impossible to process directly with the ORED algorithm, as the model wil l

grow without bounds. However, doing the appropriate merging on the pattern that

emerges (see example in Appendix B), results in the structure of Figure 2-19.

0 1
f1

2
f2

3
f3

4

Figure 2-18. Third contextual order left to r ight HMM with one state skip. The
notation +k  is used to indicate one or more occurrences of index k. The (infinite)
family of transition probabilities indicated by each symbol a in the figure are all

identical. This is a mixed-order model with a maximum order of infinity.

Notice how, regardless of the number of repetitions of any specific state, the sequence

of the last three distinct states is remembered. This is a very simple model, but still

suffices to illustrate the “longer” state memory. For example, assume that state 3 of

the HMM in Figure 2-12 always produces at least three observations. When making a

transition to state 4, these three observations will fill the whole state history taken into
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account by the third-order transition probabil ities. Due to this, information about

whether the distinct state preceding state 3 was state 2 or state 1, is not being taken

into account any more. The repetitions of state 3 effectively push this information

beyond the horizon of visible prior states taken into account by the training algorithm

when estimating the transition probabil ities. Therefore, when fixed-order models are

trained on data with such a repetitive nature22, the implicit context order of the models

(or sections of it), will be decreased to C < R. The HMM of Figure 2-19, however,

does not suffer this problem, but guarantees to maintain its C. In Section 3.3.2 we will

provide an efficient algorithm for developing and training this topology.
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3
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5
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f3

Figure 2-19. First-order equivalent of the HMM in Figure 2-18.

Applying duration and context modelling in tandem results in powerful alternatives to

standard high-order HMM modelling. These topologies allow independent variation

of context and duration orders. This topic will be developed further in Section 3.3.3,

                                               

22 In Section 4.3 p. 91 we will see that the typical analysis applied to speech puts it in this category.
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following on the development of the FIT algorithm. In Section 4.7 we will il lustrate

its application in the context of automatic language recognition.

2.6 Relationship of prior work to the ORED approach.

In this section we wil l not concern ourselves with Markov chains or N-gram models,

but will focus only on how prior higher-order HMMs formulations relate to the ORED

reduction. The idea of using a twofold product of the original state space to simplify

the formulation frequently surfaces in the literature. This is a very intuitive notion that

spontaneously arises from the mathematical formulation of higher-order HMMs (see

Section 2.2.3.2). It also forms the basis of the ORED algorithm.

Using this twofold product of the original state space, He (1988) derives a second-

order Viterbi algorithm and indicates that extending the Viterbi algorithm to even

higher orders follows along the same lines. This is very reminiscent of the ORED

approach, the main difference being that, instead of increasing the order of the

algorithm, the ORED algorithm uses this principle to reduce the order of the model.

Kriouile, Mari and Haton (1990) extend the available techniques by deriving an

extended Baum-Welch re-estimation algorithm specific to second-order discrete

HMMs. As in the first-order case, the forward and backward equations play a central

role. In this case the forward variable is a three-dimensional structure ),( kj�α ,

instead of the two-dimensional )(k�α  found in first-order algorithms. The Baum-

Welch algorithm is adapted accordingly. An alternative view is taken in the ORED

algorithm. Instead of increasing the dimension of the forward variable (and likewise

the backward one), we consider (i,j) and (j,k) in equation (2-4) to be composite

indexes of single states. Although very similar to their view, this allows us to view the

second-order equations as first-order ones, resulting in the ORED algorithm and the
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resulting model structures as illustrated in previous sections. This different viewpoint

has important implications: instead of increasing the order of a specific algorithm, the

ORED algorithm iteratively reduces the order of the model to being one. Then it can

be processed with any of the standard first-order algorithms. In an isolated digit

recognition experiment, Kriouile et al. compare the use of first-order HMMs with

second-order versions and a third model termed as a “transition equivalent model” .

The transition structure of this model is identical to what we would obtain using the

ORED algorithm. Using this last model in multi-speaker experiments, they achieve an

accuracy of 97% whereas their second-order models had an accuracy of 99%. In

speaker-independent mode this transition equivalent model could not improve on the

91% of the first-order models, whereas the second-order model yielded 93%. We

proved in Section 2.3.3 that this algorithm results in a model that is fully equivalent to

the original higher-order model. It is unclear why they achieve results inferior to those

of their second-order HMM23.

A recent paper by Mari, Haton and Kriouile, (1997) also reveals some interesting

correspondence with the ORED algorithm. The idea of using a twofold Cartesian

product of states once again surfaces. An example, reproduced in Figure 2-20, is

given of a simple HMM2 and its first-order equivalent.

                                               

23 This may be attributed to different local optima due to different initiali sation. Alternatively it could
be that one of the other requirements for full equivalence, was not met.
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Figure 2-20. a) Second-order and b) equivalent first-order HMM s
(from Mari et al., 1997).

The first-order equivalent closely24 resembles the topology that the ORED algorithm

will generate. As far as we could ascertain, this is the first reference to a fully

equivalent first order model in the published literature. It is likened to Ferguson

models (Ferguson, 1980), which are specifically designed to improve HMM duration

modell ing. As shown in Section 2.5.2, a special mixed-order HMM results in

Ferguson models as its first order equivalents, whereas the fixed order model also

devotes some of its capacity to modelling state context. If the designer of the HMM

topology is specifically interested in duration modelling, it will be more efficient to

apply this or other approaches (Levinson, 1986) specifically designed for this purpose.

                                               

24 The initial state (presumably a redundant null state) is missing from their equivalent.

a)

b)
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After illustrating the equivalent first-order model, Mari et al. favour extending the

Viterbi and Baum-Welch algorithms to second-order rather than using first-order

equivalents. As reason for this they motivate that the latter dramatically increases the

number of states. While this remark is obviously true, further investigation reveals

that this increase in states need not be a disadvantage. From the preceding work on the

ORED algorithm, it should be clear that the number of free parameters is not

increased in the process. Tied pdf.s only need to be evaluated once, and the same

number of transition probabilities will have to be considered in both cases. (As they

are working with a (fixed-order) HMM2, no tying of transitions will occur.)

Therefore, the use of the equivalent first-order model wil l not have any negative

impact on the processing requirements.

As far as memory requirements are concerned, instead of working with the three-

dimensional ),( kjtα  structure of equation (2-4), the equivalent HMM1 uses a two-

dimensional structure of the same size. One of the important findings of Mari et al.

actually deals precisely with this aspect. For computational efficiency, they

implement special measures to avoid combinations of (i,j) or (j,k) that are not coupled

via a transition in the calculation of (2-4) or its backward version. This calls for the

use of sparse structures. This situation is not confined to high-order models. In our

implementation using first-order models, such sparse structures are also utili sed.

Therefore, their algorithm wil l have the same memory requirements as those resulting

from the ORED algorithm followed by standard first-order processing.

To summarise, previous work (He, 1988; Kriouile et al., 1990; Mari et al., 1997)

focused on extending algorithms for processing second-order HMMs. Although the

authors indicate that extension to algorithms for HMMs of order higher than two will
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follow a similar pattern as the extension to second-order, no such algorithm is

presented. Their algorithms are based on the same principles as the ORED algorithm

and there is an awareness of the possibil ity of reducing the order of HMMs. However,

no algorithms formalising this concept are given (studying the ORED algorithm wil l

reveal aspects that are not so intuitive as the notion on which the algorithm is based).

In contrast to extending a specific algorithm to a higher order, the objective of our

ORED algorithm is to transform any higher-order (also mixed order) HMM to an

equivalent first-order model. This permits the application of any (unaltered)

algorithm applicable to first-order HMMs, to HMMs of any other order.

2.7 Practical issues with higher-order HMMs

In Section 2.3.3 we prove that using the ORED algorithm to first reduce a model to an

HMM1 before matching observations to it, is equivalent to matching directly the data

to the higher-order HMMs. In Section 2.6 investigation of an algorithm extended to

HMM2s naturally leads us to the structures dictated by the ORED algorithm. Taking

all this into account, it is important to note the full equivalence between extending the

order of the algorithms, or alternatively, reducing the order of the model and then

processing it with a standard first-order algorithm. In the following, comments made

about directly processing higher-order HMMs equally apply to processing its HMM1

equivalents obtained via the ORED algorithm. With the exception of ease of use, the

two approaches are identical for all practical purposes. With this in mind, we will i n

the rest of this work refer to the combination of the ORED algorithm followed by

standard first-order processing as the extended/ORED approach.

As seen in Section 2.2.3.2, using high order HMMs can be vastly more expensive than

HMM1s. The processing and memory requirements are serious issues that can easily
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place such a model outside the available computing capacity. Typically though, the

transition structure of a high-order HMM is quite sparse. In Chapter 3 we will

investigate a technique to reduce computational requirements by exploiting this

sparseness.

Another subtler problem also lurks in the large parameter spaces of high-order

HMMs. Due to this large number of free parameters, the surface over which it is

optimised during training, might (will?) be quite complex. In Chapter 3 and 4 we

show that this can cause the training algorithm to converge often to inferior solutions.

The longer history of states specified in a high-order HMMs also has severe

implications for the quantity of training data that should be available to optimise

properly the transition probabilities. The number of potential combinations grows

exponentially with the order of the model. At the same time, the number of those that

can be physically realised in a given training set actually decreases with order. In

combination this easily results in serious data deficiencies. Although good training

algorithms can maximise the usefulness of a given database, in the end there is no

substitute for more data.

2.8 Summary and conclusions

This chapter details and proves the ORder rEDucing (ORED) algorithm, useful for the

processing of high order HMMs. In contrast to existing approaches, which extends

algorithms to higher orders, this algorithm compresses any higher-order HMM to

first-order, thereby allowing the use of all standard HMM algorithms on it. In

addition, the first-order representation makes models easier to interpret. Subtle

inconsistencies become explicit and easily recognisable. The availabil ity of well-

optimised first-order algorithms is another benefit.
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Mixed-order HMMs might appear to be somewhat esoteric concepts. Using the

ORED algorithm, it is shown here that frequently used ad hoc topologies like

Ferguson models (Ferguson, 1980), are in reality equivalent first-order versions of

mixed-order HMMs specifically designed to enhance duration modelling. Another

extension, designed to enhance contextual modelling, is also proposed. The

requirements for training high order HMMs reveal serious, sometimes prohibitive,

computational demands. Reducing this, while at the same time maintaining or

enhancing the quality of the resulting model, is the subject of the next chapter.
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Chapter 3  Training high-order HMMs

3.1 Introduction

As noted in the previous chapter, HMM training algorithms can be extended to higher

orders. Alternatively, the use of our new ORED algorithm enables high order models

to be transformed to equivalent first-order versions. These models can then be trained

by using standard first-order HMM optimisation algorithms. This in effect extends the

algorithms used for training first-order HMMs to HMMs of arbitrary order and is fully

equivalent to using specially extended algorithms. In the following, both the ORED

approach and extending existing algorithms to higher orders (He, 1988; Kriouile et

al., 1990; Mari et al., 1997) will collectively be referred to as the extended/ORED

approach.

Unfortunately, due to the large number of parameters involved in such models,

training HMMs via the extended/ORED approach can be a very (even prohibitively)

computationally expensive task. We address this by introducing the Fast Incremental

Training (FIT) algorithm for fixed-order HMMs in Section 3.2. This algorithm

incrementally “grows” a high-order HMM by using lower order HMMs to prune

redundant transition probabilities before the next higher order is attempted. As will be

seen in following chapters, this can lead to large savings in computational

requirements. Section 3.3 investigates issues and techniques for applying FIT to

mixed-order models.

The FIT algorithm is not equivalent to the extended/ORED approach. The reason for

this is that the optimisation process (EM algorithm, see Moon, 1996) can, due to

initial conditions, converge to different local optima, thereby resulting in different
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solutions. Using carefully controlled simulation experiments, the quality of

extended/ORED and FIT trained models are investigated in Section 3.5. The results

show that the FIT algorithm can reduce computational requirements substantially,

yielding at the same time models that are more accurate, more compact, and

generalise better than models trained by using the extended/ORED approach.

3.2 Incremental training of fixed-order HMMs

3.2.1 Basis for Fast Incremental Training

Experience shows that in many practical situations involving non-trivial models, a

large percentage of transitions disappears during training. For many problems,

considerable training effort is therefore expended on estimating parameters that will

eventually become zero. Referring back to the examples of Section 2.4, it will be

realised that a single transition probabil ity in the R−1th-order model, is simply being

replaced by a set of probabil ities in the Rth-order model. It will result in significant

savings if the training of redundant sets of Rth-order probabilities can be avoided by

noting which corresponding R−1th-order probabilities are zero.

We now investigate the target transition probabilities of a first-order model (such as

1M  in Figure 2-1) when it is trained with data that have been generated by the

corresponding second-order model (such as M2  in Figure 2-2). Training algorithms,

such as Baum-Welch re-estimation, estimate transition probabil ities by counting the

expected number of transitions on each of the links leaving from a state (Poritz,

1988). Consider a transition in M2  from state Q j� − =1  to Q k� =  occurring with non-

zero probabil ity. If M1 was used in the place of M2 , this same transition would be

observed with a potentially different, but still non-zero probabil ity. This suggests that



Chapter 3 Training high-order HMMs 62

a first-order model can be trained to determine which sets of second-order transition

probabilities are viable. Redundant second-order probabilities can then be avoided

during subsequent training.

Consider the first-order probability in model M2  of state Q j j= >, 0  being

followed by state Q k=  (without any consideration of earlier states). Transitions

originating at the initial state are excluded since they are inherently of first-order. Let

Aj  represent the set of states that have a direct transition leading to state Q j= .

Using the definition of total probability, conditional probabil ity and the Bayes rule

yield:
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Due to the )|/P()|P( 2122 MjQMiQ == −− ��  factor, the required probabil ity is a

function of time. This suggests that the closest approximation to a second-order HMM

using a first-order HMM of similar structure would make use of restricted time-

varying transition probabil ities. To make this time-dependence explicit, (3-1) can be

rewritten as:
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If we assume that iQ =  is reachable from the initial state (no dead states), it implies

that 0)1( >−∃ �� ijw . From (3-2) it follows that 0)(0 ≠∃⇒≠′∃ �� jkijk
i

aa  and also

0)(0 =∀⇒=′∀ �� jkijk
i

aa . In other words, if at least one of a set of second-order

transition probabil ities is non-zero, then the time-varying first-order approximation

will be non-zero somewhere in time. Vice-versa if all of the second-order transition

probabilities are zero, its first-order approximation wil l also be.

First-order HMMs do not account for the time varying nature of (3-2), but will

approximate it with a single constant, let’s say ))(g( �jkjk aa =  where g() represents

the unknown approximation. If 0)( ≠∃ �� jka , any reasonable approximation

))(g( �jkjk aa =  will result in 0≠jka . Therefore, for any reasonable g() it follows that

00 ≠⇒≠′∃ jkijk
i

aa . This leads us to conclude that if any in a set of second-order

transition probabil ities are greater than zero, any reasonable (constant) first-order

approximation of it will also be greater than zero. Non-zero high-order transition

probabilities are therefore not lost during the estimation of their first-order

approximations.

Also if 0=′∀ ijk
i

a , the only reasonable approximation is 0)0)(( =≡= �jkjk aga . This

is what makes it possible to detect sets of redundant high-order transition probabil ities

by noting which lower-order ones are zero. In practical situations where the allowable

combinations of categories (such as phonemes) are sparse, avoiding the training of

exponentially growing numbers of redundant transition probabil ities, can (and does)

lead to considerable savings.

Note that training algorithms such as the Baum-Welch algorithm, while guaranteeing

an improvement on each training iteration, can converge to any of a number of local
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optima (Poritz, 1988). This makes it impossible to determine exactly to what constant

the first-order training algorithm will converge to. The approximation g() might be

very complex and dependent on many factors.

3.2.2 The FIT algorithm for the training of fixed-order HMMs

1) Set up a first-order HMM for the application at hand.

2) Run the training algorithm on the first-order model. Non-viable transitions should

disappear.

3) Convert the optimised first-order model to a second-order model. Let Aj  be the

set of states that directly precedes state jS = . Replace the probability a jk  that

joins the states S j=  and S k=  by the multiple probabilities aij k  where i Aj∈ 25.

Initialise these probabil ities with the first-order values, a a i Aij k jk j= ∈, . This

conversion wil l increase the number of transition parameters. If any transitions

disappeared while training the first-order model, they wil l not propagate to the

second-order model, thus avoiding the training of this larger number of second-

order transition probabil ities. To benefit from this a sparse transition matrix

representation must be used.

4) Use the ORED algorithm to create a first-order equivalent of this model. Initially

this model wil l match an unknown observation string with the same likelihood as

the original (trained) first-order model.

                                               

25 If the Mealy form HMM was used, a separate pdf. wil l be associated with each transition probabilit y.
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5) Now, by repeating the algorithm from step 2, train this model. This will refine the

transition probabil ities to their required higher-order values. As was previously

mentioned, an Rth-order model simply extends the memory of an R−1th-order

model by one time step. Therefore this process can be repeated to train even

higher-order models, bearing in mind that deficiencies might arise from

inadequate quantities of training data.

3.3 Mixed-order variants of the FIT algorithm

It will be extremely helpful if we can develop a version of the FIT algorithm that can

incrementally train general mixed-order HMMs. Such and algorithm wil l, at each

stage of the FIT algorithm, ascertain which of the transition probabil ities should be

extended to the next higher order, and which must be retained at its current order. The

model can then expand only those sections where dependence on earlier states is of

importance. Sections already operating on their proper Markov order can be retained

in their present form. Due to the more compact use of transition probabilities, the

models wil l train faster and the probabil ities will be more reliable. While this seems to

be a very useful idea for reducing computational and other difficulties, it contains

some formidable obstacles. The problem lies in how to decide which probabil ities to

extend.

When a mixed-order system is implemented as a fixed-order system, with the same

highest order as the mixed-order system, each of the lower order transition

probabilities will be implemented as a set of identical higher-order transition

probabilities. If all the higher-order probabil ities are hierarchically divided into sets

according to the lower order probabilities from which they originate, these sets can be

searched to find which have closely related values. Such sets then indicate the
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possible presence of implicitly lower order transition probabil ities in a mixed-order

system. As also discussed in Section 2.3.1, if these transitions share the same

destinations, the states from which they originate can be merged into a single state.

Otherwise, these states should at least be tied to each other to provide greater

robustness through parameter tying.

At first glance one might attempt to extend the FIT algorithm to mixed-orders by

including such a merging and tying procedure after each training cycle. Unfortunately

this approach will fail . To see this, consider a first-order transition probability jka  that

is extended during the first cycle to the set jijk Aia ∈, . If not merged, each of these

will be expanded in the next cycle to ihijk Aha ∈, . The problem now is that,

although all of the probabil ities in the set jijk Aia ∈,  may be identical, this may not

necessarily be so for the sets ihijk Aha ∈, . The only way to determine this would be

to inspect the sets ihijk Aha ∈, . This unfortunately means that we cannot merge

lower order transition probabil ities on a per cycle basis, but will have to wait until all

cycles of the standard FIT algorithm have been completed. At that late stage all the

computation of the standard FIT algorithm has already been expended. Merging and

tying at this stage, coupled with some retraining can, however, make the final model

more compact. Due to the above-mentioned diff iculties, this approach has not been

explored further.

There is a viable approach to training mixed-order HMMs via the FIT algorithm. If

the mixed-order model is not of general structure, but is rather constrained to a very

specific mixed-order topology, the prior information on this topology can be used

when deciding how transitions should be extended. This then results in special cases

for steps 3) and 4) of the FIT algorithm (page 48). As should be clear from the ORED
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algorithm itself, mixed-order models lead to tied transitions and the requirement to

merge certain states. The merging of states add extra complexity. However, steps 3)

and 4) of the FIT algorithm can be combined into one simpli fied step. Basically it

involves observing the effect of applying these two steps in a given situation. Then

these steps can be replaced by directly modifying the model accordingly. In the

following this notion will be applied to the topologies of Sections 2.5.2 and 2.5.3.

3.3.1 Duration modelling with the FIT algorithm

Recall from Section 2.5.2 that a higher-order HMM can specifically focus on duration

modell ing by modifying the transitions on states with self-loops. In particular, all

transition probabil ities 
1

1
1 +′

−′′
D

D jii
a  sharing the same destination state 1+′Di , with the same

number of repetitions of j preceding it, are constrained to have an identical value. This

can be accomplished by modifying step 3) of the FIT algorithm to read:

3) If state S=j has a transition jja′  (self-loop) leaving from it, let jA  be the set of

states directly preceding it. If it does not have a self-loop, jA  is empty.

Now replace the probabil ity a jk  that joins the states S j=  and S k=  by the

multiple probabil ities aij k  where i Aj∈ . Probabil ities jiaijk ≠,  are tied

(identical). All are initialised with the corresponding first-order value, that is

a a i Aij k jk j= ∈, . These tied probabil ities wil l lead to tied states, which may be

merged by the ORED algorithm subsequently used in step 4).

As suggested above, steps 3) and 4) can be merged into one simplified step that

directly modifies the model in question. As illustrated in Figure 3-1 and Figure 3-2,

the ORED algorithm in this situation adds an extra state for each existing state with a

self-loop. The original self-loop is redirected to this new state. The values and
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destinations of all the other transition probabil ities of this original state are duplicated

at the new state.
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Figure 3-1. Durational left to r ight HMM2 with one state skip.
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Figure 3-2. First-order version of Figure 3-1.

Repeated application of the duration modelling version of the FIT algorithm wil l

result in stacks of associated states, termed duration stacks in Section 2.5.2, p. 48.

3.3.2 Context emphasised mixed-order HMMs

From Section 2.5.3, a higher-order HMM can specifically focus on the combination of

differing states by ignoring the number of self-transitions. In particular, all transition

probabilities of the form 
121 +

++′
CCiiii

a �  are constrained to have the same value via state

tying. As indicated in Section 2.5.3 and Appendix B, the infinite order that arises from

the arbitrary number of repetitions, causes ORED to grow without bounds. Only after

inspecting and extrapolating the resulting structure can the necessary merging be
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implemented. This is, of course, not amenable to automatic processing. Steps 3) and

4) of the FIT algorithm can, however, be simplified into a combined step that takes all

the intermediate processing into account:

From the first-order model, identify and record the self-transitions on states, that is,

find each state jQ =  that has a transition jja . Then remove all these self-transitions

from the model. Increase the order of this model (that has no self-loops) according to

steps 3) and 4) of the standard FIT algorithm, but do not renumber immediately the

composite state indexes of the resultant model. For all states jQ =  for which self-

loop jja  exists in the original model, identify the set of states jS =  and/or ),( jiS = .

All these states get an additional self-loop with value jja . After this the renumbering

of state indexes to single values can proceed, thereby completing the replacement step

for steps 3) and 4).

3.3.3 Combinations of context and duration models

A context model (Sections 2.5.3 and 3.3.2) with context order C ensures that the

effect of C distinct prior states is taken into account when making a transition. The

duration modelling is, however, restricted to a simple self-loop, suffering from the

same problems as first-order HMMs. Expanding this model further by using the

duration modelling of Sections 2.5.2 and 3.3.1 (resulting in a CD model), re-endows it

with duration modelling without detriment to its context-modelling abil ities. As

discussed earlier, this duration modelling does not take the duration of prior duration

stacks into account. This is the price paid for guaranteeing a fixed context and

duration order. In Section 4.7 we illustrate the use of such models by applying it to a

language recognition task.
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Interchanging the order of the techniques to produce a DC model, the context

modell ing will enlarge the dependence on prior stacks. This wil l also include

dependence on states from these prior duration stacks, thereby also re-introducing

dependence on their duration. Unfortunately this dependence also once again re-

introduces a horizon26 over which, during training, the full C distinct prior states may

not be visible any more. By not recognising the duration modelling purpose of the

states in the duration model, the DC combination could, therefore, once again lose

some of its context modelling capabil ities during training.

Many other combinations are possible. We will however content ourselves with those

discussed above, leaving further investigation to other studies.

3.4 Example of training via the extended/ORED and FIT

algorithms

This section illustrates27 the above by recovering a high-order HMM from simulated

data. This is done by using both the extended/ORED algorithm as well the FIT

algorithm. The model of Figure 3-3 was used to generate simulated data. This model

was determined by removing some of the transition probabil ities from the model of

Figure 2-12. These removals were chosen to show specific effects at different levels

(iterations) of the FIT algorithm.

                                               

26 Similar to the situation sketched in Section 2.5.3.
27 Section 3.5 presents a formal comparison of the convergence of the FIT and extended/ORED
approaches. The current section only serves to enhance understanding of the algorithms.
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Figure 3-3. Model used for generating simulated data.

Firstly, all transitions involving a transition of state S = 3 to itself were removed ( a33

in Figure 2-1). This is a first-order effect that eliminates four probabilities in the

second-order model and ultimately eliminates nine probabil ities in the third-order

model (all ′a  in Figure 2-2 and Figure 2-12 with two or more 3’s in the subscript).

Next all transitions from state S = 1 to itself, given that the previous state was also

S = 1, have also been removed ( ′a111 in Figure 2-2). This is a second-order effect that

ultimately eliminates four probabilities in the third-order model (all ′a  in Figure 2-12

with three or more 1’s in the subscript). Finally, a third-order transition probability,

namely ′a0123 , has also been removed. The remaining probabilities were fixed at

arbitrarily chosen values. Two-dimensional data are assumed.  The three diagonal

Gaussian pdf.s of the emitting states were centred on the points (0,0), (0,1) and (1,1).

In two sub-experiments the standard deviations used in the pdf.s, were varied. In the

first, the standard deviation 2.0=σ , resulting in little overlap between the pdf.s. The

other experiment used a wider standard deviation, namely 33.0=σ , giving

considerable overlap. For each of these sub-experiments 1000 different strings28 of

simulated feature vectors were drawn. The extended/ORED approach was based on

the structure of Figure 2-14 as initial configuration, whereas the incremental approach

                                               

28 As specified by the model (see Figure 3-3), the number of vectors in each string will vary randomly.
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was initially based on Figure 2-1. The initial transition probabilities for the self-loops

were fixed at 0.8 and the remainder was equally divided between the other transitions.

Initial values for the pdf.s were determined from vector quantisation (Gray, 1984).

Figure 3-4 shows the model topologies as they evolved from stage to stage in the

incremental training process. Both sets of standard deviations yielded identical model

structures. Compare this figure to those of Figure 2-12, Figure 2-13 and Figure 2-14.

The transitions that disappear during each stage of the incremental training

correspond exactly to the model used to generate the data with. Due to the presence

of local optima, this will not necessarily be so in all cases.

f1 f2 f3

   
f1 f2 f3

f2

f3

f1

    
f1 f2 f3

f1 f2 f2 f3

f2

f3

f3

Figure 3-4. Model structures after a) first, b) second and c) third-order stages of
the FIT algorithm.

Two different quantities were calculated with which to judge the finer differences

between the models. The transitions and mean values in the models are roughly of

comparable magnitude. The first quantity used measures the average difference

between these trained parameters and their actual underlying values. Using the narrow

pdf.s ( 2.0=σ ) both the extended/ORED and FIT approaches converged to the

correct structure with identical parameters. As can be seen from Table 3-1, the trained

parameters closely matched the true underlying values. With the wider pdf.s

( 33.0=σ ), the extended/ORED approach converged to a sub-optimal structure,

a) b) c)
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clearly reflected in the rather large deviation from the true values. The incremental

approach again yielded the correct structure.

From the final li kelihoods of Table 3-2 the same pattern emerges. The example shows

that the local optima to which both approaches converge, may or may not coincide. It

is interesting to note how, in the incremental approach, the likelihood improves

rapidly with increasing order until the proper order is reached. Thereafter only a

marginal improvement, which can be attributed to specialisation on the training data,

takes place. It was also previously observed that the extended/ORED training

approach in the sub-experiment with the wider pdf.s yielded a large deviation between

the resulting and actual parameters. In spite of this, the total likelihood achieved is

reasonable and compares with the second-order approximation of the incremental

approach. This is the typical behaviour of convergence towards a local optimum.

Table 3-1. Mean deviation between trained and actual parameters.

Pdf st dev σ Extended/ORED training Incremental (FIT) training

0.20 0.015 0.015

0.33 0.307 0.017

Table 3-2. Total likelihood log[f ( | )]X1
L M  after training.

St. dev. Extended/ Incremental (FIT) training order
σ. ORED 1 2 3 4 5

0.20 -503.74 -853.28 -649.17 -503.74 -501.46 -501.35
0.33 -5703.66 -5944.01 -5700.87 -5611.79 -5609.52 -5609.25

3.5 Simulations to examine the convergence of

extended/ORED and FIT based training

As seen in Section 3.4, this algorithm wil l not necessarily converge to the same values

as the extended/ORED approach. Underlying training algorithms, such as the Baum-

Welch algorithm, only guarantees converging to a local optimum (Poritz, 1988). The
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FIT algorithm starts out with a different number of differently valued initial

parameters from those of the extended/ORED approach. It may, therefore, converge

to a different local optimum from that of the extended/ORED approach. A valid

question is whether one technique wil l yield more accurate results than the other. The

incremental approach with its much smaller initial set of parameters initially denies

the model the full flexibil ity that the extended/ORED approach can benefit from. This

may lead to the ultimate selection of a less beneficial solution. On the other hand, with

the smaller sets of well-chosen initial parameters that the incremental approach

provides, the space over which it is optimising wil l probably be less convoluted. It is

possible that the focus in training, created in this way, will contribute towards

decreasing the effects of local optima in the parameter space. To investigate the

quality of the FIT solution, carefully controlled experiments are needed. In particular,

it is desirable to use data obtained from a hidden Markov source with known order

and transition probabil ities. Clearly, this is not possible with speech data, so synthetic

data was used. This allows precise control over the Markov order, access to the

underlying transition probabil ities and control of the difficulty of the problem. For

each synthetic experiment, two HMMs of a given order and complexity were

generated. The extended/ORED and FIT algorithms were tasked with inferring the

parameters of these models, using data that was generated by them. Test data

generated by the two models is then classified according to which model generated it.

Access to the underlying HMMs allows testing against the actual generating model

(not the FIT or extended/ORED estimated model), and therefore allows an estimate of

the optimal classification performance achievable. This is useful as it can identify

specialisation problems and determine expected performance bounds.
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3.5.1 Generating simulated data

A hidden Markov model consists of a component that measures the similarity between

feature vectors and states. A transition structure then models how these states may

combine to form the whole pattern under consideration.

In the current situation, we will model the local similarities by a set of two-

dimensional Gaussian densities with an isotropic variance. The number of these

densities will be specified in each experiment. Their centroids are randomly placed on

a square two-dimensional plane. Each centroid is constrained to be within a certain

specified range of standard deviations from its closest neighbour. Figure 3-5

il lustrates a typical set of density centroids obtained in this way. In the following

experiments the number of densities, as well as the separation between them, will be

varied. The transition structure was manipulated by starting with a randomly

initialised ergodic model structure of a specified Markov order. The number of states

in this ergodic structure was determined from the specified number of densities in the

model. Two extra states were added to supply the model with an initial and

terminating state. Transition probabil ities were chosen randomly, with biases

favouring self-loops and reducing the probabil ity of termination29. This was done to

ensure that very short feature vector sequences would not be dominant (the actual

length will be random). These transitions are then pruned to obtain a controllably

                                               

29 Where L is the number of links leaving from a state, random variables LiX i ≤≤1,  were drawn
from an uniform distribution on the range [0,1]. The link leading to the termination state was reduced

to 10/iX , while the one corresponding to a self-transition was enhanced to )1(4 −LX i . After

pruning, the remaining probabiliti es were normalised to a unity sum.
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sparse transition structure. If no path exists between the initial and termination state,

the model is discarded and the whole process is repeated.

Figure 3-5. An example of a set of Gaussian pdf. centroids from HMM s used to
simulate data. The circles are the one standard deviation contour on the pdf.s.

The key parameters regarding the transition structure of the model are the order of the

model, the number of states, the final number of transition probabil ities and the

sparseness of the transition structure. The last two are related but are also random and

somewhat difficult to control since a single deactivated transition could potentially

disable large sections of the model. The abil ity to transform any higher-order HMM to

an equivalent first-order model by means of the ORED algorithm meant that the data

could be generated using a first-order HMM.

3.5.2 Comparing FIT vs. extended/ORED trained models

3.5.2.1 Methodology

In this section we compare the classification accuracy and the number of transition

probabilities present in models trained via the extended/ORED and FIT algorithms. In
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the classification experiment, the object is to determine from which of two (synthetic)

HMMs the sequence is most likely to have come. This is a two-class classification

problem. We compare extended/ORED and FIT trained results with a HMM1 as well

as with the actual underlying HMMs used to generate the synthetic data. From this,

conclusions can be drawn about the relative merits of the various techniques.

A single comparison experiment consists of generating two comparable HMMs as

described in Section 3.5.1. The number of transition probabilities in each is recorded.

These two models are then used to each generate 1000 (training) feature vector

sequences. Each set of 1000 sequences is vector quantised into the number of

Gaussian clusters pertinent to the model. The initial ergodic models required by the

extended/ORED, FIT and HMM1 training algorithms are configured from this. The

sets of training data are then used to train the models using the respective algorithms.

The numbers of transition probabil ities present in the trained models are noted. The

1000 training sequences are then classified (as to which model generated the

sequence) using the 4 different sets of models, i.e. firstly with the true underlying

HMMs, then with those trained via the extended/ORED algorithm, then with those

resulting from the FIT algorithm and lastly with the HMM1s. From all of this the

various recognition accuracies are noted. The known underlying models are then used

each to generate another 1000 independent (testing) feature vector sequences. These

testing sets are used to verify the classification results on data not used during the

training phases.

The above procedure is repeated twenty times, resulting in 20000 trials per

experiment on a given HMM configuration (different orders and pdf. centroid

placements). A total of 1.28 mill ion trials were undertaken for these experiments. The

first three experiments generate data using eight state (ten counting the initial and



Chapter 3 Training high-order HMMs 78

termination states) HMMs of order two, three and four. The Gaussian centroids were

spaced to be between 1.5 and 2 standard deviations from its closest neighbour. To put

this into perspective, note that at roughly 2 standard deviations spacing between the

centroids, the envelope of the densities merges into a single peak. The last experiment

(experiment 4) uses a second-order HMM with thirty-two states and more severe

pruning. This results in a second-order model with the transition sparseness

comparable to that of the previously used fourth-order model. We also placed the

Gaussian pdf.s more densely by restricting the centroids of closest neighbours to be

between 1 and 2 standard deviations from each other. Table 3-3 summarises the four

conditions evaluated in this experiment.

Table 3-3. The four different generating HMM experiments evaluated.
“ σσ Spacing” is the distance between the Gaussian centroids.

Experiment 1 2 3 4
Order 2 3 4 2
States 8 8 8 32
σ Spacing 1.5 -3 1.5 -3 1.5 -3 1-2
Max links 656 5264 42128 34880
Ave links 134 398 1232 974
Sparseness 20.4% 7.6% 2.9% 2.8%

3.5.2.2 Model sizes

We first consider the compactness, i.e. the sparseness of models derived via the

extended/ORED and FIT algorithms as this indicates the computational complexity of

the training procedure. In Figure 3-6 the excess number of non-zero transition

probabilities (expressed as a percentage relative to the actual number of non-zero

transition probabil ities), resulting from these algorithms when compared to the true

underlying model, is shown. The sizes of the 8 state models, which have fairly well

separated Gaussian centroids, are well approximated by the FIT algorithm,
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irrespective of the sparseness factor. This, however, does not hold for the

extended/ORED approach, which rapidly escalates in size.
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Figure 3-6. Excess transitions in extended/ORED and FIT trained HMMs
relative to those of the true underlying model. The HMMs are identified by

tuples such as (3,8), indicating a third-order HMM with eight states.

Remember that as far as using the extended/ORED approach is concerned, we are

merely training a very large and complex first-order HMM, which happens to be

mathematically equivalent to the Rth-order HMM. The behaviour of the

extended/ORED approach is therefore not surprising as it is common for pattern

recognition systems to converge to bad local optima when confronted with a number

of training parameters that far exceeds those of the actual underlying model. This is

termed “specialisation” (Raudys & Jain, 1991). The FIT approach, which does not

immediately consider all the available parameters while training, but “grows” them as

needed, is able to avoid this problem for experiments 1, 2, and 3. In the 4th

experiment, the spacing between Gaussian centroids is less than 2 standard deviations,

so none of the individual density functions are recognisable in the envelope density

(i.e. they do not form distinct peaks) which makes it hard to estimate the original

model from this data. While the model determined via the FIT algorithm is four times
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the size of the actual model, it is substantially (72%) smaller than the result obtained

by using the extended/ORED algorithm.

In the following sections we consider the classification accuracy of the various

models. Results on training data are considered separately from those achieved on

independent testing data, since the contrasts between them demonstrates the

generalisation abil ity of the respective techniques.

3.5.2.3 Accuracy on training data sets

Figure 3-7 summarises the classification accuracies achieved on the training data.

This graph shows the relative increase in number of errors compared to that obtained

from the known (ideal) underlying models, i.e. if the underlying model has 100 errors

and extended/ORED model 150, this is indicated as 50% excess. When interpreting

these numbers one should remember that it is a relative measure, the absolute error

rates for all the simulation experiments reported here are all well below 10%.
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Figure 3-7. Relative error increase when classifying training data with
extended/ORED, FIT and first-order trained HMMs, compared to that of the

true under lying model.

Note that the first-order HMM produces (unsurprisingly) poor performance on data

originating from higher-order models, thus illustrating the importance of using higher-
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order HMMs where appropriate. An important weakness of the extended/ORED

algorithm, namely training data specialisation, is clearly highlighted in these tests. As

the underlying HMM transition matrices become sparser, extended/ORED’s

performance on training data improves until, for the (2,32) case, its error rate is 7%

lower than that of the true underlying model. This specialisation (over training) results

from excessive free parameters.

To determine whether the differences in accuracy of the various training algorithms

are statistically significant, we use the McNemar test (Gill ick & Cox, 1989). This

sensitive test is appropriate for comparing classifiers evaluated on common test data.

Of the 24 pair wise combinations30 present, only 3 pairs were found that were not

statistically significantly different with 95% confidence (see Appendix C.2.2). In spite

of the large number of repetitions, the accuracy of the extended/ORED models for the

(3,8), (4,8) and (2,32) HMMs could not be differentiated from the underlying models.

It is interesting to note that the simplest and least sparse HMM, namely (2,8), is

absent from this list. We believe that the extended/ORED algorithm could not

specialise to the same extent on the training data in this case, as the number of

redundant parameters (transition probabil ities) is too small.

3.5.2.4 Accuracy on testing data sets

Figure 3-8 shows the results obtained by classifying independent testing data

generated by the same underlying models. On the least sparse (2,8) model, the

                                               

30 The generating, extended/ORED trained, FIT trained and HMM1 models can be arranged in six pair-
wise combinations. This is done for four generating conditions.
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extended/ORED performance compares well with the FIT algorithm. This model has

relatively few free parameters and will not specialise easily. FIT performs

substantially better than extended/ORED for the remaining models as the underlying

transition probabil ity matrices are more sparse. This occurs because of the

extended/ORED algorithm’s inabil ity to prune unneeded transitions as efficiently as

FIT is able to, resulting in models with very high degrees of freedom, which causes

specialisation and hence poor test data performance. These results clearly indicate that

the extended/ORED algorithm has a serious propensity to specialise on the training

data, a deficiency that does not affect the FIT algorithm to the same extent. Of

significant importance is that for the more difficult (4,8) and (2,32) HMMs, the results

from the higher-order extended/ORED models are very similar to those obtained by

using the first-order HMM! Clearly the extended/ORED approach does not exhibit a

clear performance advantage over first-order approaches, considering the

computational simplicity of the latter.
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Figure 3-8. Relative error increase when classifying independent testing data with
extended/ORED, FIT and first-order trained HMMs, compared to that of the

true underlying model.

Again, we employ the McNemar test with a 95% confidence level to establish which

training algorithms yield statistically significant different test data performances. We
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find that all but the extended/ORED vs. FIT results on the data from the (2,8) model,

and the extended/ORED vs. HMM1 results on data from the (2,32) model, differ

significantly (see Appendix C.2.3). Both exceptions correspond to observations we

have previously made in this section.

If, due to the effect of local optima and specialisation, expensive higher-order HMMs

yield results comparable to first-order HMMs, then it is hardly surprising that this

technology has found so little penetration in current pattern recognition systems. By

not trying to optimise the whole parameter space simultaneously, the FIT algorithm

provides an alternative that produces far better results with substantially reduced

computational requirements during both the training and testing phases.

3.6 Summary and conclusions

The ORED algorithm followed by standard first-order training, and by implication

any direct higher-order extensions of the re-estimation equations normally used for

training first-order HMMs, has been compared to the new Fast Incremental Training

algorithm that we have developed. By means of simulations we found that the former

is inclined to specialise on the training data. This results in bulky models that do not

generalise well on data unseen during training. We find that in some cases, the

extended/ORED approach leads to results comparable to those of a simple and

inexpensive first-order HMM. The FIT algorithm, like most optimising pattern

recognition algorithms, can also suffer from specialisation. In the experiments

conducted here, it does, however, seem less prone to this weakness. Lastly, we want

to point out that, while the FIT algorithm is computationally efficient, the problem of

inadequate amounts of training data still remains and can be addressed using

interpolation or related techniques (Bahl et al. 1983).
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Chapter 4  High-order HMMs applied to Automatic

Language Recognition

4.1 Introduction

In previous chapters we developed theory for high-order hidden Markov modelling. In

this chapter we demonstrate its practical applicabili ty. Phonotactic modelling in

automatic language recognition (ALR) systems is a large and complex model of the

interdependence of the phonemes of each language (Yan & Barnard, 1995). Because

of the size and complexity of these models, we have chosen this as a suitable field to

demonstrate our techniques with. It must be stressed at the outset that the intention is

not to develop a fully-fledged ALR system; this is a formidable exercise in its own

right. Instead the intention is merely to demonstrate that the concepts discussed in

previous chapters are indeed applicable to practical systems. At the same time,

behaviours found in simulation experiments can be verified on a non-trivial real-li fe

problem. While the intention of this chapter regarding ALR appears modest, the

application of our methodology to this problem and to the development of more

advanced systems, is very promising.

Language identification presents a formidable problem for implementation in

automatic systems, mainly because of the difficulty in quantifying parameters that

provide discrimination. The problem is exacerbated further by the various sources of

variabil ity in typical scenarios. Such factors include

• speaker dependence,

• regional accents,
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• text dependence,

• channel dependence, and

• noise.

We base our ALR system on modelling different languages with higher-order variants

of ergodic HMMs. In this way, a model of the sounds and sound clusters occurring in

the particular languages can be acquired. We will show that this can be done while

avoiding the formidable obstacle of phonetically transcribing the large speech

database that this problem demands.

In Section 4.2 we supply some background information on ALR. We position our

ALR approach relative to some systems reported in literature. We then conduct two

sets of ALR experiments. Sections 4.3, 4.4 and 4.5 discuss database, signal processing

and modelling concepts common to both sets. In Section 4.6 we extend the simulation

results of Section 3.5 by using both FIT and extended/ORED training to model the

English and Hindi languages with second- and third-order ergodic HMMs. The results

correlate with those we found in the simulations, namely that the FIT models are more

compact and provide comparable or better accuracy. In the second set of experiments

(Section 4.7), we investigate the use of combining explicit context and duration

modell ing (see Section 3.3.3) in ALR systems. Although showing promising

tendencies, the amount of testing data was only sufficient to reveal significant

differences between the baseline HMM1 and the various higher-order HMMs. In spite

of this, useful indications of the capabil ity of these techniques, and how they differ

from standard fixed-order modelling, emerge. Section 4.8 indicates that, compared to

other systems not requiring transcriptions, our system is indeed very successful. Even

when compared to a very popular group of ALR systems that do require
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transcriptions, we are quite competitive. In Section 4.9 we include a list of obvious

enhancements that a future ALR system, based on our HMM methodology, should

include.

4.2 Background on language recognition

We do not intend to provide full coverage of the available literature on ALR in this

section; the interested reader can find excellent material on this in Zissman (1996) and

Muthusamy, Barnard and Cole (1994). Instead we will provide a broad outline of and

comment on the main approaches and show how this relates to our own work.

Useful features for language recognition appear at different levels (Bond & Fokes,

1991; House & Neuberg, 1977). Acoustic-phonetics describes the nature and

inventory of phonemes. Prosodics cover duration and intonation. Phonotactics

describe the rules according to which phonemes may combine in a given language.

The lexicon of a given language, and the syntax, according to which its words may

combine, are also language specific features. Other distinctions are also possible

(Kadambe & Hieronymus, 1995). While acoustic-phonetics and prosody are useful for

ALR (Hazen & Zue, 1997; Marcharet & Savic, 1997; Lund, Ma & Gish, 1996; De

Bruin & Du Preez, 1993; Sugiyama, 1991; Foil 1986; Goodman, Martin & Wolford,

1989), they do not directly contribute to the discussion at hand and will therefore not

receive any special attention here. The focus of this chapter will rather be on

describing the phonotactic structure present in a language through the use of higher-

order HMMs. Some attention will also be given to how our work relates to large

vocabulary continuous speech recognition (LVCSR) based language recognition

systems.
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Partly due to a lack of good transcribed databases, early ALR attempts focussed on

techniques that do not require such resources. The use of ergodic HMMs to model

untranscribed sequences of speech symbols was first suggested by House and

Neuberg (1977). The basic idea is to use the transition probabil ities of the HMM to

model phonotactic constraints on pairs of phonemes or broad phonetic categories.

Using 5-state ergodic HMMs Savic, Acosta, and Gupta (1991) managed faultless

identification of four languages. The database used for the test was, however, rather

small . Zissman (1993) turned the tide against the use of ergodic HMMs when he

concluded that it showed no advantage over simple Gaussian mixtures, which, of

course, do not model phonotactics, but rather acoustic-phonetics. In our own work, we

found ergodic HMMs quite useful on high quality speech (Du Preez, 1991b). The

accuracy of this direct approach was, however, reduced when used on telephone

speech (Du Preez, 1992). Inspection revealed that the acoustic component as reflected

in the HMM densities (pdf.s) were contributing to this loss of accuracy, probably due

to the interaction with the telephone channel’s transfer function. A solution to this was

to use one common set of densities for all the language HMMs involved (Du Preez,

1992, 1993). This prevents systematic biases in the acoustic component of the model,

and focuses the system on the phonotactic information contained in the transition

probabilities. With such a system, we managed accuracy in excess of 90% for a three

language ALR system. Subsequent work by Mendoza et al. (1996) confirms the

usefulness of desensitising the system to the acoustic component. In their system,

after matching the speech to a model, they completely remove the acoustical

component from the resultant score. This contrasts with the previous conclusion of

Zissman (1993) who found no benefit in the structural component of the HMM.
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The next generation of ALR systems employed as first stage a phoneme recogniser

that transforms the speech into a sequence of (non-ideal) phoneme labels. Several of

these phoneme recognisers may be used in parallel and they need not correspond to

the languages being modelled (Zissman & Singer, 1994; Yan & Barnard, 1995). An

N-gram or similar model is used to capture the phonotactic structure in these

sequences. This information is language specific and therefore allows classification.

Although arbitrary lengths of phoneme sequences can be modelled, insufficient

quantities of training data make bi-grams a popular choice (Zissman 1995a). Another

additional factor that we would like to suggest is that, due to the hard errors

introduced by the phoneme recognition system, the variability in longer phoneme

sequences may just be too large for reliable modelling. Zissman (1995a) averages an

accuracy of 97.9% classifying between pairs of languages (NIST’94 45s. set). To

achieve this they also include gender and duration modell ing. Yan and Barnard (1995,

1996) approximate tri-grams in an efficient manner by combining forward and

backward bi-grams. Also incorporating (amongst others) duration information, they

achieve a respectable 91.96% accuracy on a six-language test (NIST’94 45s. set). In a

similar vein Navrátil and Zühlke (1997) enlarge the phonotactic context by combining

two bi-gram models, in this case the standard backward bi-gram and the bi-gram

obtained by considering the current and once-removed previous phoneme (termed a

skip-gram). Kadambe and Hieronymus (1995) uses a Continuous Variable Duration

HMM, trained from transcribed data, to model phonemes. They argue that Consonant

Vowel Consonant (CVC) clusters are effective for describing languages. They

therefore imbed these phoneme models into a second-order ergodic HMM, its

transition probabil ities being estimated from text (tri-gram analysis). Classifying
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language pairs (NIST 94 45s. set) they obtain results varying from 86% up to 100%

(average 94.8%), depending on the specific language pair.

From our perspective, the advantage of this phoneme recognition followed by N-gram

approach lies in its abil ity to make use of a wide phoneme context. Due to data

scarcity though, this is often not exploited fully. Another advantage is that

linguistically well-defined concepts are brought to bear upon ALR. On the down side,

later statistical modelling can never fully compensate for hard decisions about

phoneme classes introduced in the earlier stages of the system. Another very

important disadvantage is the requirement for transcribed databases. Establishing

transcribed speech databases and phoneme recognisers for new languages is very

costly. Using existing phoneme recognisers from other languages can at most be a

useful surrogate (Lund, Ma & Gish, 1996), which is likely to decrease performance

with dissimilar languages (such as the indigenous languages of Africa; South Africa

has 11 off icial languages). Such cross-usage also detrimentally prevents inclusion of

language dependent factors during the phoneme recognition phase.

The next generation of ALR systems enhanced contextual modelling while avoiding

the dangers of early hard decisions by incorporating lexical and linguistic modelling

(Kadambe & Hieronymus, 1995; Mendoza, Gil lick, Ito, Lowe & Newman, 1996;

Schultz, Rogina & Waibel, 1996; Hieronymus & Kadambe, 1997). Modelli ng

languages through Large Vocabulary Continuous Speech Recognition (LVCSR)

systems promises very accurate systems. On the NIST’95 45s set, Mendoza et al.

report accuracies exceeding 99% on a language pairs task. It is interesting to reflect on

some aspects of such a system from a higher-order HMM perspective. Although the

state-level structure, internal to phoneme and word models, typically makes use of
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first-order transitions, the larger word-level structure is based on external knowledge.

Typically a left-to-right no state-skip structure is used, which can be shown to be a

special case of our context-emphasised models introduced in Section 2.5.3. Word

structure implicitly creates a larger context within which each of the first-order

transition probabil ities operates. In a certain sense then, a word model can be thought

of as a first-order realisation of a higher-order specification. A language model, N-

gram or otherwise based, extends this concept even further. Therefore, from our

perspective, a LVCSR based ALR system resembles to a certain extent a large mixed

order HMM. External knowledge plays a large role in demarcating its structure while

training refines its parameters within the given boundaries. The main disadvantage of

this approach lies in the extreme expense of creating a LVCSR system for a new

language, dwarfing even that of a phoneme-recognition system (which often is one

sub-component of it).

The expense of creating transcribed databases for new languages has led some

researchers to (re)consider once again techniques that do not rely on this. Lund et al.

introduces a system, focussing on acoustic-phonetic aspects, that do not require any

transcriptions during training. By using time-varying trajectory models of speech, and

experimenting with the use of various databases for training, they achieve an average

accuracy of between 85.2% and 93% on language pair tasks (NIST’95 45s. set),

depending on the training databases incorporated.

In summary, the strength of current successful ALR systems lies in their abil ity to

model long contexts of speech. Possible weaknesses lie in the early use of hard

decisions, and the expense incurred by the need for transcriptions. In the following
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section we will address the weaknesses, while attempting to maintain the strengths as

far as possible.

4.3 Database and signal processing

Our prior work with first-order HMMs (Du Preez, 1993) indicated that about 1 hour

of speech was adequate for modelling a language. Preliminary experiments indicated

that the higher-order Markov models would need substantially more data. Since they

need not be transcribed, this does not necessarily pose a problem. From the OGI-TS

database31, we had roughly 100 minutes of free-format English and Hindi speech

available as training data. These were the two largest collections32 of data available to

us and were therefore used in the experiments. Silence sections in the recordings were

removed automatically by using an energy criterion. The power in the remainder was

normalised to compensate for recording volume. After pre-emphasis, tenth-order

LPC-cepstra (Markel & Gray, 1976; Davis & Mermelstein, 1980) and delta-cepstra

(Lee, 1989 p. 65) were calculated from 32ms time frames spaced at 16ms. intervals.

Cepstral mean subtraction (Atal, 1974; Furui, 1981) was used to compensate for

channel variation. For testing data we processed a set of independent 5s segments, as

well as the 45s NIST’95 LID set, in a similar manner. Each language model had its

own transition probability description, while one central set of pdf.s was referenced

collectively by all the language models. This shared pdf. arrangement was first

reported by us (Du Preez, 1993).

                                               

31 The Oregon Graduate Institute kindly made the OGI-TS database available to us.
32 The other recordings in this corpus have about 60 minutes per language available.
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4.4 Basic system structure and initialisation

In applications like word recognition, a left-to-right HMM is normally used (Rabiner,

Juang, Levinson & Sondhi, 1985). In an application like language recognition, the

model might start off in any one of a number of states and move to and fro between

states as dictated by the characteristics of the particular language. The strict left-to-

right form normally used is too restrictive for this situation and a more general

structure is called for. In previous work (see Section 4.2) we successfully utilised the

first order ergodic HMM (illustrated in Figure 4-1), for modelling a language. The

ALR system consists of a bank of such models, each optimised to a specific language.

Unknown speech is matched to each of the models and classified according to which

one fits best. As also discussed in Section 4.2, sharing only one set of pdf.s between

all the language HMMs enhances robust recognition.

0 5

2
f2

1
f1

3
f3

4
f4

Figure 4-1. A four-state ergodic HMM. (States 0 and 5 are the initial and final
null states.) We based our experiments on sixteen-state ergodic HMM s.

In the following sections, various extensions of this basic ergodic structure (we use a

sixteen-state version) will be investigated. Because of the presence of local optima, it

is important to initialise an HMM properly before training takes place. Models

derived via the FIT algorithm are automatically initialised with the parameters of the

models that they extend and therefore ultimately only require the initialisation of the
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basic sixteen-state first-order HMM. Models directly trained via the ORED reduction

were configured using an order expanding procedure similar to that occurring within

the FIT algorithm itself (See step 3) on page 64). In this process the initial parameters

of the sixteen-state first-order ergodic HMM are transferred to the higher-order

HMM. It is, therefore, only necessary for us to consider the initialisation of the basic

first-order HMM.

Before configuring any models, the training data for both languages were pooled and

clustered into 16 diagonal Gaussian clusters. This was done by first using a non-

uniform binary split K-means algorithm (Gray, 1984) to find the approximate cluster

centres. These centres were then used to initialise Gaussian clusters, which were re-

clustered using a dynamic clustering procedure (Devijver & Kittler, 1982, pp 407 –

413). This set of pdf.s was used to initialise the first-order ergodic HMM. All self-

looped transitions in this model were initialised to a value of 0.8. At each state the

remaining part (not devoted to the self-loops) was spread equally over the remaining

transitions. This base model is directly (via order expansion) or indirectly (via the FIT

algorithm) used to initialise all other models.

4.5 Training procedure

Because it is much faster and in practice gives comparable performance to the Baum

Welch algorithm, all training was done using the Viterbi re-estimation algorithm

(Levinson, 1985; Picone, 1990). Higher-order models were always reduced to

equivalent first order form by using the ORED algorithm, enabling the use of the first-

order re-estimation algorithm in all cases. The Viterbi algorithm includes a matrix that

records the optimal path between states as a function of time. In a first-order HMM

system, the product of the number of states with the number of time frames in the
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speech segment, dictates the size of this matrix. To reduce the demands on memory,

the training sequences were subdivided into 5s sequences that formed the basic

patterns presented to the system.

The pdf. component, common to all the language models, was implemented as a

shared structure. Only after all the training exemplars had been presented to their

respective models, did updating of the common set of pdf.s as well as the individual

sets of transition probabilities, take place33. To avoid unnecessary computation,

redundant transition probabilities, pdf.s and states were pruned after each training

cycle. These cycles were repeated until the increase in total likelihood decreased

lower than a specified threshold. Extended/ORED-based training directly used this

procedure, while the other models used it to train incrementally from earlier models

(according to the FIT procedure).

Transitions originating at the initial state or leading to the final state occur only once

in a 5s segment and thus were very sparse. We wanted to allow the system to start off

in any of the original sixteen states, and also to be able to terminate at any of them.

This was done after training by resetting the transition probabil ities leading from the

initial state to all be equal (value 1/16). Transition probabili ties leading to the

termination state were all set to an unity value34.

                                               

33 This means that models cannot be optimised separately, but are trained simultaneously.
34 Strictly speaking this violates the probabili stic base since probabilities at those states will exceed a
total value of one. Since this arrangement merely passes the li kelihood values at those states directly
through to the final state, we accepted this inconsistency.
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4.6 Comparison of FIT- vs extended/ORED-trained HMMs

4.6.1 Topology and training method

To verify the results obtained with the simulations of Section 3.5.2, we extended the

basic system of Section 4.4 to second- and third-orders. Direct training via the ORED

reduction results in models X2 and X3 (X for eXtended/ORED; generically we wil l

refer to the group of models as Xm). Training via the FIT algorithm resulted in

models F2 and F3 (F for Fixed order FIT; generically we wil l refer to the group as

Fm). For reference we also include the results from the base-line first-order system

(Model 1). Training proceeded as discussed in Section 4.5.

4.6.2 Computational requirements

To explore the computational cost of training via the FIT or extended/ORED

approaches, parameters determining this were recorded during the training process.

The memory requirements, shown in Figure 4-2, are based on the space required by

both the Viterbi-paths matrix, as well as a sparse representation of the transition

probabilities themselves. During training the X2 model requires close to 1.5 times the

space of the F2 model. With the third-order model this escalates close to 8 times

larger35.

For the CPU calculation we ignored the contribution of evaluating the pdf.s and only

considered the processing requirements of the transition probabil ity component. For

                                               

35 Other informal experiments indicate that this gets even worse for models with more states or higher
orders.
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models with many transitions and relatively few pdf.s (as is often the case), this

dominates the CPU usage. The F2 and X2 models required approximately the same

amount of transition operations36. The F3 model trained close to fifteen times faster

than the X3 version. Figure 4-4 reports the number of transition probabilities in the

trained models, thereby indicating its compactness. From this it is clear that the FIT

algorithm results in much more compact models, getting more so as the order

increases.
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Figure 4-2. Maximum memory requirements during training of the HMM s.
Based on the size needed for the Viterbi path matrix for a 5s chunk of speech, as
well as the memory required to store the transition probabilities (using a sparse

representation).

Table 4-1 summarises the computational requirement as well as the final number of

transition probabil ities in the resultant FIT trained models relative to the

extended/ORED approach. Clearly the FIT approach results in more compact models.

                                               

36 We consider this result to be somewhat of a outlier since the FIT algorithm iterated unusually long in
this case. If the same number of training cycles were used, the FIT algorithm would have used less than
60% of the number of calculations required for the direct approach. In our experience the FIT
algorithm usually converges in fewer cycles than the direct approach. Never the less, we report the
figure as we found it.
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The large computational differences found in especially the F3 vs. X3 models are

sufficient to justify the use of the FIT algorithm.
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Figure 4-3. Number of transition probability operations required during the
training of the HMMs. (Averaged over the English and Hindi models.)
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Table 4-1. Comparison of computational requirements and final model
sizes for 16-state ergodic HMM s trained via extended/ORED and FIT

algorithms.
Ratio FIT/ORED

Order MEM CPU Size
2 69% 94% 70%
3 13% 7% 5%

4.6.3 Classification accuracy

Having discussed some key parameters for the training of these high-order HMMs, we

now turn our attention to the accuracy of the resultant models.

Table 4-2. Accuracy measured on training set for 16-state ergodic HMM s
trained via extended/ORED and FIT algorithms.

5s (2169 trials) 45s (339 trials)
Order ext/ORED FIT ext/ORED FIT

1 83.4% - 92.6% -
2 86.8% 85.2% 95.3% 95.3%
3 92.7% 89.6% 98.8% 99.1%

Table 4-3. Accuracy measured on testing set for 16-state ergodic HMMs
trained via extended/ORED and FIT algorithms.

5s (247 trials) 45s (39 trials; NIST’95)
Order ext/ORED FIT ext/ORED FIT

1 69.2% - 82.1% -
2 75.7% 76.1% 87.2% 89.7%
3 79.8% 79.8% 89.7% 97.4%

Table 4-2 and Table 4-3 summarise the accuracies of models trained via the FIT

algorithm and those trained via the extended/ORED approach. On the training data the

accuracy of the FIT and extended/ORED trained models are comparable. On

independent testing data, however, in all cases the FIT trained models perform

similarly or better than the extended/ORED trained models. Furthermore, all the FIT

trained models result in smaller differences between training and testing set accuracies

than those achieved by the extended/ORED trained models. This, combined with the

larger models that resulted from extended/ORED training, indicates greater

specialisation in such models. With the 5s classification trials, a McNemar test with a
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90% significance level (see Appendix C.3.3) shows all the higher-order models to be

more accurate than the baseline HMM1. Due to the rather small test set, the

experiment based on the NIST’95 45s set (39 trials) could only show the 3rd-order FIT

model (F3) to be more accurate than the 1st-order HMM on a 90% significance level.

No significant differences could be detected between the extended/ORED and FIT

trained models. This is accomplished at a much-reduced computational cost. In

general the results confirm those found in the simulations of the previous chapter.

4.7 Independent variation of context and duration orders

In Sections 2.5.2 and 2.5.3 we introduced topologies that enhance the capabil ity of

high-order HMMs to focus on either duration modelling or modelling the context of

different previous states (termed context modelli ng for brevity.). From the first we

defined the duration order D as the maximum number of repetitions of the current

state that is taken into account when making a transition to a next state. The context

order C was defined as the maximum number of distinct previous states (ignoring

repetitions) that are taken into account when making a transition to a next state. In

Sections 3.3.1 and 3.3.2 we have shown that the FIT algorithm can be adapted to this

type of modelling. Section 3.3.3 discusses possibili ties of using them in combination

to achieve independent control over C and D. To gain better insight into these

techniques and to investigate specifically the role that C and D plays, they are now

applied to ALR in the following sections.
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4.7.1 Topologies used

In this section we experiment with some extensions to higher-order HMMs which

shows promise for ALR. In Figure 4-5 we categorise them by noting their context and

duration orders (C and D), as well as their FIT training-dependencies.

1

C3D2C3

D3

F3

F2

D2

C2D2 C2D3C2

C3D3

D = 1 D = 2 D = 3

C = 1

C = 2

C = 3

Figure 4-5. Identities and FIT training dependencies (indicated by arr ows) of
ALR models. C is the context order and D is the duration order.

Model 1 is the same first-order 16 state ergodic HMM that we used in Section 4.6. It

serves as a base-line model and all other models are extensions of it. The fixed-order

models F2 and F3 (generically termed Fm) are also directly imported from this

previous section. As noted in Section 2.5.3 (p. 50), training on data patterns that

repeats before moving on to a new state, can effectively diminish the C value of

models and/or portions thereof. The C2 and C3 models (generically termed Cm),

while neglecting duration modelling are ensuring that the system “knows” about

respectively 2 and 3 distinct prior states when making a transition to a next state. The

longer history that is being modelled by maintaining the C values in this way,

necessarily makes these models more sensitive to training data deficiencies. Models

D1 and D2 (generically Dn) adds duration to model 1, while C2D2, C2D3, C3D2 and
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C3D3 (generically CmDn) add duration information to the respective models which

they extend. DnCm models were not considered since they, similar to the Fm models,

also suffer from a reduced context order when trained on repetitive data (see

Section 3.3.3 p. 69). We do not suggest that the above topologies are the only viable

ones. Investigating others, however, is reserved for future work.

4.7.2 Model sizes

The number of transition probabilities in the trained models is shown in Figure 4-6.

From this it is quite clear that the various Cm models are considerably larger than the

corresponding Fm models (though still smaller than the Xm models considered in a

previous section; C3D3 is five times smaller than X3 – marked ext/ORED R=3 in

Figure 4-4).
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Figure 4-6. Number of transition probabilities in the trained HMMs. (Averaged
over the English and Hindi models.)

It must be kept in mind though that these topologies were designed for different

purposes. We suspect that the growth in the number of transition probabil ities of the

Cm models can be attributed to the larger history of states that it is modell ing. The
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longer such a history is, the greater the potential number of state combinations wil l be.

When duration modell ing is added to form the CmDn models, it is done on an already

enlarged model, thereby contributing to a marked growth in the number of

parameters. As previously explained, multiple feature frames describing the same

phoneme hamper context modelling in the Fm models.

4.7.3 Classification accuracy on training set

The classification accuracy on the training set is given in Table 4-4. The added benefit

of each successive FIT extension is clear. The rapid increase in accuracy of the

various context-emphasised models indicates an increasing abil ity to fit the training

data.

Table 4-4. Training set classification accuracy for different models.
5s (2169 trials) 45s (339 trials)

Ctx\Dur D=1 D=2 D=3 D=1 D=2 D=3
C=1 1: 83.4% D2: 84.1% D3: 84.6% 1: 92.6% D2: 94.1% D3: 94.7%

C=2 C2: 89.0%
F2: 85.2%

C2D2: 90.3%
C2D3: 91.4% C2: 98.5%

F2: 95.3%
C2D2: 99.1%

C2D3: 99.1%

C=3 C3: 94.6% C3D2: 95.4%
F3: 89.6%

C3D3: 97.3%
C3: 99.7% C3D2: 100%

F3: 98.8%
C3D3: 100%

4.7.4 Classification accuracy on testing set

Table 4-5 reports the classification accuracy on an independent set of testing data. In

general the pattern of improvement with each new FIT extension is followed. At the

C=2 level, the context-emphasised models appear to function very competitively. We

suspect that our training database was too small to sustain the long history span

utilised at the C=3 levels. The large difference in accuracy between the training and

testing sets (i.e. specialisation is taking place) for the C3 family also confirms this. In

general models benefit from duration modelling.
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McNemar significance tests reveal almost identical results to those obtained in

Section 4.6.3. In general the higher-order models improve on the baseline HMM1,

while no interesting differences could be detected between the higher-order models

(see Appendix C.3.3).

Table 4-5. Testing set classification accuracy for different models.
5s (247 trials) 45s (39 trials; NIST’95)

Ctx\Dur D=1 D=2 D=3 D=1 D=2 D=3
C=1 1: 69.2% D2: 79.4% D3: 80.6% 1: 82.1% D2: 92.3% D3: 92.3%

C=2 C2: 75.7%
F2: 76.1%

C2D2: 78.1%
C2D3: 77.7% C2: 92.3%

F2: 89.7%
C2D2: 92.3%

C2D3: 94.9%

C=3 C3: 76.9% C3D2: 76.1%
F3: 79.8%

C3D3: 76.5%
C3: 89.7% C3D2: 89.7%

F3: 97.4%
C3D3: 94.9%

It is safe to conclude that increasing the duration and/or context orders is indeed

beneficial, as long the training database is large enough to sustain it. The various

CmDn models hold much promise for ALR, but needs more extensive testing on

larger databases. Although it might seem unfair to compare results from the simple

first-order model to that of large higher-order models, the purpose of these

experiments was to investigate the role of context and duration modell ing HMMs, and

not to compare models containing an equal number of parameters.

4.8 Comparison with prior work

The best ALR system (F3) from the previous section can be described as 1) not

needing a transcribed training database while 2) primarily relying on phonotactic

constraints as the principal source for language identification. To compare with other

systems, we will only consider our results for a two-language task, namely 3) using

the NIST’95 45s set for English and Hindi data. Unfortunately, we could not find any

direct comparisons for this specific language pair in the available literature.
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Furthermore, this is a rather limited test set. Therefore results should correspondingly

be interpreted as providing only a broad indication of behaviour. It should also be kept

in mind that most of the systems that we will compare with are optimised products

including many enhancements. Our system was designed to ill ustrate high-order

HMM concepts. Many enhancements are available to improve it further (see

Section 4.9).

This work is conceptually similar to the original work by House and Neuberg (1977),

Savic et al. (1991) and to Du Preez (1991b-1993). Unfortunately, as standardised

ALR databases were not yet available, those early efforts used small in-house

databases and direct comparison is not possible. By duplicating our original work

using the OGI-TS database, we have shown in the previous section that higher-order

HMMs can significantly improve on those early systems.

Lund et al. (1996) introduces a system, focussing on acoustic-phonetic aspects, that

does not require any transcriptions during training and can thus be directly compared

to our work. On language pairs from the NIST’95 set, they achieve accuracy ranging

from 85.2% to 93.6%. Although based on different principles, the 97% accuracy that

we achieved compares well with this.

To make further comparisons, we need to look at techniques that do incorporate

transcriptions in the training process. The phoneme-recognition followed by N-gram

approach is related to ours in the sense that both focus on phonotactic information.

Zissman (1995a), also modelling gender information and using interpolation to

smooth transition probabil ities, averages an accuracy of 97.9% when classifying

between pairs of languages (NIST’94 45s. set). With a fairly sophisticated system
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Kadambe and Hieronymus (1995) achieve results varying from 86% up to 100%

(average 94.8%), depending on the specific language pair.

From all of these results, taking into account that our system does not implement

enhancements and also does not require transcribed databases, we conclude that

higher-order HMM modelling can result in competitive ALR systems. Indications are

that, since our system cannot benefit from prior information in the form of pre-trained

phoneme models, it will also require larger training databases for adequate training.

Finally, we also expect that approaches based on explicit phoneme recognition

preceding N-gram modelling wil l degrade more rapidly when presented with difficult

conditions such as those found on very noisy channels. Since our system does not use

early hard decisions, degradation should be more graceful.

The investment required for, and complexity of, LVCSR based ALR systems put

them outside the scope of systems that are comparable to our approach.

4.9 Outstanding issues

We view the ALR experiments of Section 4.7 as a prototypical demonstration of

concept. Many necessary refinements are absent from it and there are also several

aspects that require further investigation. In order to expand it into a full -blown ALR

system incorporating many languages, at least the following should receive attention:

1) From the preceding work it is clear that several topologies are useful. The

different alternatives (existing and new) must be investigated further.

2) Other parameters like the order (standard, context and duration) and the number of

states need to be optimised.
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3) A thorough investigation of the relationship between the size of the models and

the size of a database sufficiently large to train it is necessary.

4) As we can accept that we will never have quite enough training data, we also need

to smooth the values of badly estimated higher-order probabilities using better

estimated lower order probabil ities. Interpolation techniques are commonly used

in N-grams applications (Zissman, 1995a).

5) From previously cited work it is quite clear that explicitly incorporating gender in

the models, will increase accuracy. A simple and frequently used approach to do

this is to simply use separate models for the sexes, possibly combining their scores

in a soft manner (Zissman, 1995a).

6) Previous work (Mendoza et al., 1996) indicates the usefulness of explicitly

removing the acoustic component from the resultant score when matching

unknown speech to a language model. Although our system uses a common

acoustical model for the languages concerned, removing it altogether from the

final matching score should be investigated.

7) The current system models pseudo-phonemes (or broad sound categories) with

single HMM states. It may prove fruitful instead to imbed detailed phoneme

models in a larger HMM. Similar to our context model, these sub-models can then

be arranged in the bigger structure to allow higher-order modelling of specific

sequences of them. This structure can be grown incrementally by using a special

form of the FIT algorithm. This approach is likely to re-introduce a requirement

for transcriptions, although this can be limited to initialising the sub-models.

Alternatively, related models can be “grown” by subdividing states in our current

system (Ostendorf & Singer, 1997).
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4.10 Summary and conclusions

This chapter shows that the FIT algorithm is indeed practical for training large real-

life high-order HMMs. It confirms the benefits over extended/ORED training that we

found in previous simulation experiments. The FIT algorithm provides greater

computational efficiency, results in more compact models and if anything, increases

accuracy. We demonstrated some very promising prospects for implementing ALR

systems that do not need transcriptions. We also demonstrated techniques that achieve

independent control over context modelling (modell ing sequences of consecutive

states while ignoring their individual repetitions) and duration modelling (modelling

the duration/repetitions for which a specific state is active) in higher-order HMMs.
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Chapter 5  Conclusion

5.1 Concluding perspective

As noted in the opening paragraphs of this dissertation, high-order HMMs have, until

now, generally been considered to be powerful but unpractically expensive, with

capabilities exceeding those of the popular first-order HMM. This work helps to

capture this elusive power. Our perspective is that HMMs of all orders are just simply

first-order HMMs, and can all be expressed in a common form by using the ORder

rEDucing (ORED) algorithm (Section 2.3). They all share the same inherent

representational capacity. High-order transition probabiliti es are simply an elegant

mathematical way of specifying the topology of the model. This insight cuts through

the confusing aspects to expose the important high-order HMM issues:

• How can they be trained eff iciently? The topology arising from high-order

specification can result in such a rich set of parameters that training them can be

prohibitive. To this end we developed the Fast Incremental Training (FIT)

algorithm (Section 3.2). It utilises the relationship between transition probabilities

of different orders to incrementally avoid the calculation of redundant parameters.

This can substantially reduce computational requirements.

• How can training methods improve the quality of the resultant model? The

parameter space that is being optimised has local optima. Large pattern

recognition systems are prone to train to optima that provides a good fit to (the

peculiarities of) the training data, but does not generalise well on previously

unseen data. Special strategies are necessary to avoid this. The FIT algorithm does

so by first optimising on less complicated parameter spaces and then
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incrementally expanding it to better-behaved larger parameter spaces (Sections 3.5

and 4.6).

• How can we design topologies to provide specified functionality? This is a very

rich field that can now be addressed through the use of high-order hidden Markov

modell ing. We have found the following useful topologies:

♦ It is immediately clear that first-order topologies can be imbued with a greater

sense of context by expanding them to a (fixed) higher order (Section 2.5.1).

The potential, however, is richer than this.

♦ Specifying high-order transition probabilities to emphasise the modelling of

state duration while maintaining inter-state dependence at first order results in

the well known Ferguson duration modelling topology (Section 2.5.2).

♦ In phonotactic modell ing (used in automatic language recognition systems),

the combinations of distinct phonemes are of importance. In practical systems,

the short analysis frames (typically 10 to 20ms) cause apparent phoneme

repetitions, but in reality they reflect duration and not phonotactic information.

Using high-order transition probabilities, we were able to design a topology

that can guarantee a certain width of phonotactic context (Section 2.5.3).

♦ This enhanced context modelling can be combined with duration modelling

resulting in topologies with independent control over the duration and

phonotactic (distinct state) contexts (Section 3.3.3). These topologies were

shown to be applicable to automatic language recognition (Section 4.7).

Topology design also includes an interesting aspect not addressed here. In the field of

information theory, the automatic determination of the number of states and topology

of HMMs are receiving attention (Liu & Narayan, 1994). Similarly, techniques to grow



Chapter 5 Conclusion 110

larger HMMs by subdividing the states of smaller models are also being researched

(Ostendorf & Singer, 1997). These techniques aim to infer the appropriate topology

directly from the training data alone. Our high-order HMM approach also benefits

from external knowledge about the desirable characteristics of the model. It will be

interesting to follow the interplay of these approaches in future work.

5.2 Topics for further study

This study is a first exploration of a rich, multi-faceted and largely unknown field. By

necessity many aspects are neglected. Some of them are listed in the following:

• In Section 3.3 we discussed the possibil ity of analysing the states and transitions

of a trained fixed-order HMM to detect the presence of mixed-order transitions.

By a process of state tying and/or merging followed by retraining (possibly

iterative), the number of free parameters in the model can be reduced, thereby

enhancing its robustness while decreasing its computational demands.

• A study on the exact mechanisms involved when incrementally training (or

growing?) the parameters of a model (as the FIT algorithm does) can be very

useful. The way in which this guides the model to converge on better local optima

will provide perspectives applicable to pattern recognition systems in general.

• The concept of using high-order transition probabilities to design topology is in its

infancy. The examples that we do have were brought about by specific application

requirements. Research is needed to determine the scope of this technique and

establish procedures for practising it. This will lead to topologies optimised to the

requirements of specific applications.
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• The relationship between the size and structure of a model, and the size of a

database sufficiently large to train it, must be investigated.

• Due to the large number of parameters in high-order HMMs, techniques providing

robustness against training data scarcity is a major issue. With the exception of the

convergence properties of the FIT algorithm it received no attention in this

research. We expect that techniques from language modelling (Jelinek, Mercer &

Roukos, 1992) will be applicable here.

• Our methodology invites large-scale practical application. The work in Chapter 4

is a single demonstration of its applicabil ity to ALR. An evaluation using larger

training and testing databases is necessary to make firm conclusions possible. It

should include more languages and incorporate the enhancements listed in

Section 4.9.
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Appendix A  Detailed example of the ORED procedure

In Section 2.4.1 we briefly demonstrated how the ORED algorithm reduces a simple

mixed-order HMM (shown in Figure A-1) to its equivalent first-order version. This

section provides the step-by-step details for this process.

0
1
f1

a'11

2
f2

a'122
a'1222

3
f3

a'233

4
a'01=1 a'12

a'123
a'1223
a'2223

a'134
a'234
a'334

a'13

Figure A-1. A mixed-order HMM (maximum order 3).

I teration 1:

Step 1a: Create the states S=0, 1, 2, 3 and 4

Step 1b: Add to them the states S=(1,2), (2,2), (2,3), (3,3), (1,3) and (3,4)

Step 1c: Not applicable (Q=4 is only entered by links originating at Q=3)

Step 2a: 01a′  between S=0 and S=1

11a′  between S=1 and S=1

12a′  between S=1 and S=(1,2)

13a′  between S=1 and S=(1,3)

Step 2b: 122a′  between S=(1,2) and S=(2,2)

1222a′  between S=(2,2) and S=(2,2)

123a′  between S=(1,2) and S=(2,3)

1223a′  between S=(2,2) and S=(2,3)

2223a′  between S=(2,2) and S=(2,3)

233a′  between S=(2,3) and S=(3,3)
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134a′  between S=(1,3) and S=(3,4)

234a′  between S=(2,3) and S=(3,4)

334a′  between S=(3,3) and S=(3,4)

Step 2c: Not applicable

Step 3: Remove states S =2, 3 and 4.

Step 4: S = 0 and (3,4) are null states.

1f  to S=1

2f  to S=(1,2) and (2,2)

3f  to S=(1,3), (2,3) and (3,3)

(See Figure A-2 at this point. Step 3 is omitted to show the full set of states.)

0 1,2
f2

2,3
f3

3,4

2,2
f2

a (1,2)(2,2)(2,2) =a' 122

2

1,3
f3

a01 =a' 01 =1 a1 (1,2) =a' 12 a (1,2)(2,3) =a' 123 a (2,3)(3,4) =a' 234

a 1(1,3) =a' 13

a (1,3)(3,4) =a' 134 =1

a (1,2)(2,2) =a' 122 a (2,3)(3,3) =a' 233

a (1,2)(2,2)(2,3) =a' 1223
a (2,2)(2,2)(2,3) =a' 2223

a (3,3)(3,4) =a' 334 =1

3,3
f3

1
f1

a11 =a' 11

2
f2

3
f3

4

Figure A-2. ORED iteration 1, after completion of step 4. Dead states S=2,3 and
4, are supposed to be removed in step 3, but are kept to illustrate all states.

Step 5a: States S are renumbered to form the states Q for the next cycle as

shown in Figure A-3
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Step 5b: As transition probabil ities 233a , 235a  and 335a  ( )2,2)(2,2)(2,1(a , )3,2)(2,2)(2,1(a

and )3,2)(2,2)(2,2(a  in Figure A-2) contains more than two subscripts (i.e.

they have an order > 1), we now iterate by returning to step 1 with

Figure A-3 as initial model.

0
2
f2

5
f3

7

3
f2

a 233=a'1222

4
f3

a01=a' 01=1 a 12=a'12 a25=a' 123 a 57=a'234

a14=a' 13

a47=a' 134=1

a 23=a'122 a56=a' 233

a 235=a'1223
a 335=a'2223

a 67=a'334=1

6
f3

1
f1

a 11=a'11

Figure A-3. ORED iteration 1, after completion of step 5a. This is the initial
model for the next iteration of ORED. Only links departing from S=3 are stil l of

order higher than one.

I teration 2:

Step 1a: Create the states S=0, 1, 2, 3, 4, 5, 6 and 7

Step 1b: Add to them the states S=(2,3), (3,3) and (3,5)

Step 1c: Not applicable (Q=7 is only entered by first-order links)

Step 2a: 0101 aa ′=  between S=0 and S=1;

1111 aa ′=  between S=1 and S=1

1212 aa ′=  between S=1 and S=2
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1314 aa ′=  between S=1 and S=4

12223 aa ′=  between S=2 and S=(2,3)

12325 aa ′=  between S=2 and S=5

23356 aa ′=  between S=5 and S=6, between S=(3,5) and S=6  (tied)

13447 aa ′=  between S=(1,3) and S=(3,4)

23457 aa ′=  between S=4 and S=7, between S=(3,5) and S=7  (tied)

33467 aa ′=  between S=6 and S=7

Step 2b:

1222233 aa ′=  between S=(2,3) and S=(3,3)

1223235 aa ′=  between S=(2,3) and S=(3,5)

2223335 aa ′=  between S=(3,3) and S=(3,5)

Step 2c: Not applicable

Step 3: Remove state S =3

Step 4: S = 0 and 7 are null states.

1f  to S=1

2f  to S=2, (2,3) and (3,3)

3f  to S=4, 5, (3,5) and 6

(See Figure A-4 for result at this point. Step 3 is omitted to show all states.)



Appendix A Detailed example of the ORED procedure 125

0 2
f2

7

4
f3

a01=a' 01=1 a 12=a'12

a
67 =a'

334 =1
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a
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234
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Figure A-4. ORED iteration 2, after completion of step 4. Since there are only
first-order transition probabilities present in model, step 5 will be followed by

termination in step 6. Transition probability values to the left of the assignment
stil l refer to Figure A-3. Dead state S=3 is supposed to be removed in step 3, but

is kept to show all states. States S=5 and S= (3,5) are tied.

Step 5a: States are renumbered.

Step 5b: All transition probabil ities have only two subscripts i.e. they are all

of first order.

(See Figure A-5 for result at this point, once again step 3 is omitted.)
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Figure A-5. ORED iteration 2, after completion of step 5. States S=6 and S=8 are
tied and lead to the same destinations. They can therefore be merged.

Step 6: Since states S=6 and S=8 in Figure A-5 are tied and also share the

same successors, they are merged into state S=6 of Figure A-6. States

are renumbered and the algorithm terminates.
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Figure A-6. Finally, the first-order equivalent of Figure A-1.
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Appendix B  ORED reduction for context modelling

In Section 2.5.3 we introduced an HMM topology that guarantees that a context of C

(the context order) distinct states will be taken into account when making a transition.

We indicated in that section that this model is of mixed-order and has a maximum

order of infinity. This makes direct application of the ORED algorithm impossible. In

the following we provide an ORED procedure reducing the model of Figure B-1.

Figure B-2 and Figure B-3 show the result of the ORED algorithm after the first and

second cycles.
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Figure B-1.  Second contextual order left to r ight HMM with one state skip. The
notation +k  is used to indicate one or more occurrences of index k. The family of
transition probabilities indicated by each symbol a in the figure are all identical.
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Figure B-2.  Result after first cycle of ORED algorithm on Figure B-1.
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Figure B-3.  Result after second cycle of ORED algorithm37.

                                               

37 Merging takes place between tied states that share a common set of destination states for their transitions. The ORED algorithm dictates that merging should take place
during step 6 (after all cycles have completed). Merging can be moved to just after step 2 if none of the (common) destination states wil l split in following cycles. This is the
case if only first order transition probabiliti es enter or leave the destination states. This early merging is used in Figure B-3 to simplify the procedure.
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From each of these figures, note the four substructures38 of which a generalised

version is shown in Figure B-4. These piles will grow one state higher with each cycle

of the ORED algorithm. Due to the infinite order of the model they wil l ultimately be

infinitely high, making direct application of ORED impractical. The transition

probabilities 
ihi

a +′  ascending this pile are all equal to each other. All the states they

ascend to share the same pdf. if . Similarly all the transitions leaving the pile share a

common transition probability 
jih

a •′ . This makes it possible to reduce this infinite pile

to the simple model il lustrated in Figure B-5. Applying this reasoning to either Figure

B-2 or Figure B-3 results in Figure B-6 as the first-order equivalent of Figure B-1.

f i f j

f i

p 1

p2

p 1

p 2

f i

p1

p2

Figure B-4.  Repeating (infinite) substructures of Figure B-2 and Figure B-3.

                                               

38 In Figure B-2  the four groups are (ignoring the single state to the right): {1, 2} , { 3, 4} , { 5, 6} and
{ 7, 6} . In Figure B-3 they are { 1, 2, 3} , { 4, 5, 6} , { 7, 8, 9} and { 10, 11, 9} .
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Figure B-5.  Finite equivalent of Figure B-4.
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Appendix C  Statistical significance tests

C.1 Overview of McNemar significance test

When comparing two algorithms for classification accuracy, it is important to bear in

mind that the measured accuracies are also random variables. We therefore need to

ascertain if the measured differences between them are indeed statistically significant. It

is necessary to test the following two hypotheses in a mathematically principled manner:

H0: The algorithms are equally accurate.

H1: The algorithms are not equally accurate.

Specifically, if the probabil ity that the differences between the algorithms can be

attributed to chance can be calculated, conclusions can be drawn with specified certainty.

This quantity is a function of the amount of data that is used to evaluate the hypothesis. If

only small differences exist between two algorithms, a large set of data will be necessary

to establish this with confidence. In other words, the rejection of H1 may be traced to two

sources. Either the two algorithms are in reality equally accurate, or it may be possible

that the set of data used in the test was just not large enough to establish clearly the

difference. The McNemar significance test is applicable when a number of common data

segments are to be classified with two different algorithms. The joint performance of the

two algorithms can be represented in a 2x2 matrix as follows:

Table C-1. The number of occurrences of joint classification outcomes for the two
algorithms. N is the random variable while n is its outcome.

Algorithm 2
Correct Incorrect

Correct N00=n00 N01=n01Algorithm 1
Incorrect N10=n10 N11=n11
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The MacNemar test takes the viewpoint that N00 and N11 describe the behaviour common

to both algorithms and should therefore be ignored. The off-diagonal elements N10 and

N01, however, represent the differences between them. The number of occurrences for

which only one of the algorithms made an error is given by K = N10+N01, with outcome

K=k. It can be shown (Gill ick & Cox, 1989) that under hypothesis H0, N10 has a binomial

B(k, 0.5) distribution. The probabil ity P of observing the given value can then be

calculated as:
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C.2 Simulation experiments of Section 3.5.2

C.2.1 Configurations evaluated

Table C-2. The four different generating HMM experiments evaluated. “ σσ Spacing”
is the distance between the Gaussian centroids.

Experiment 1 2 3 4

Order 2 3 4 2

States 8 8 8 32

σ Spacing 1.5 -3 1.5 -3 1.5 -3 1-2

Max links 656 5264 42128 34880

Ave links 134 398 1232 974

Sparseness 20.4% 7.6% 2.9% 2.8%
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C.2.2 Results on training data

Table C-3. McNemar counts for data configuration 1 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39395 0 39068 327 39001 394 38501 894

0 605 215 390 199 406 215 390

Generating

39283 0 38931 352 38388 895

0 717 269 448 328 389

Extended/

ORED

39200 0 38472 728

0 800 244 556

FIT

38716 0

0 1284

HMM1

Table C-4. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts of
Table C-3. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

1.86E-06 1.55E-15 0 Generating

0.001 0 Extended/ORED

0 FIT
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Table C-5. McNemar counts for data configuration 2 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39198 0 38768 430 38685 513 37727 1471

0 802 378 424 238 564 297 505

Generating

39146 0 38594 552 37657 1489

0 854 329 525 367 487

Extended/

ORED

38923 0 37667 1256

0 1077 357 720

FIT

38024 0

0 1976

HMM1

Table C-6. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts of
Table C-5. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0.072785 0 0 Generating

7.53E-14 0 Extended/ORED

0 FIT
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Table C-7. McNemar counts for data configuration 3 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39247 0 38939 308 38954 293 37710 1537

0 753 336 417 210 543 264 489

Generating

39275 0 38894 381 37689 1586

0 725 270 455 285 440

Extended/

ORED

39164 0 37716 1448

0 836 258 578

FIT

37974 0

0 2026

HMM1

Table C-8. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts of
Table C-7. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0.287352 0.000256 0 Generating

1.62E-05 0 Extended/ORED

0 FIT
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Table C-9. McNemar counts for data configuration 4 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39894 0 39841 53 39831 63 39608 286

0 106 60 46 40 66 35 71

Generating

39901 0 39815 86 39601 300

0 99 56 43 42 57

Extended/

ORED

39871 0 39611 260

0 129 32 97

FIT

39643 0

0 357

HMM1

Table C-10. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts
of Table C-9. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0.57246 0.03018 0 Generating

0.014948 0 Extended/ORED

0 FIT
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C.2.3 Results on testing data set

Table C-11. McNemar counts for data configuration 1 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39401 0 38987 414 38974 427 38460 941

0 599 172 427 184 415 223 376

Generating

39159 0 38847 312 38288 871

0 841 311 530 395 446

Extended/

ORED

39158 0 38436 722

0 842 247 595

FIT

38683 0

0 1317

HMM1

Table C-12. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts
of Table C-11. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0 0 0 Generating

1 0 Extended/ORED

0 FIT
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Table C-13. McNemar counts for data configuration 2 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39187 0 38273 914 38558 629 37667 1520

0 813 275 538 206 607 295 518

Generating

38548 0 38059 489 37227 1321

0 1452 705 747 735 717

Extended/

ORED

38764 0 37546 1218

0 1236 416 820

FIT

37962 0

0 2038

HMM1

Table C-14. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts
of Table C-13. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0 0 0 Generating

4.93E-10 0 Extended/ORED

0 FIT
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Table C-15. McNemar counts for data configuration 3 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39240 0 37977 1263 38705 535 37689 1551

0 760 197 563 167 593 258 502

Generating

38174 0 37805 369 36872 1302

0 1826 1067 759 1075 751

Extended/

ORED

38872 0 37519 1353

0 1128 428 700

FIT

37947 0

0 2053

HMM1

Table C-16. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts
of Table C-15. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0 0 0 Generating

0 3.57E-06 Extended/ORED

0 FIT
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Table C-17. McNemar counts for data configuration 4 (see Table C-2). The models evaluated are given in the top row and right-most
column. The four values at the intersection of a given pair of models represent the joint classification counts, as is also illustrated and

explained in Table C-1.

Generating Extended/ORED FIT HMM1

39873 0 39567 306 39699 174 39510 363

0 127 37 90 28 99 61 66

Generating

39604 0 39485 119 39299 305

0 396 242 154 272 124

Extended/

ORED

39727 0 39433 294

0 273 138 135

FIT

39571 0

0 429

HMM1

Table C-18. The probability that observed differences between any two models arose by chance. Calculated from the McNemar counts
of Table C-17. Models likely to differ in accuracy are shaded.

Extended/ORED FIT HMM1

0 0 0 Generating

1.36E-10 0.182802 Extended/ORED

8.9E-14 FIT
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C.3 Automatic language recognition experiments

(Sections 4.6 and 4.7)

C.3.1 Configurations evaluated

Table C-19. Identities and descriptions of models used in automatic language
recognition experiments. All models indicated as extending another model are

trained via the FIT algorithm, models 1, X2 and X3 are trained directly using the
Extended/ORED approach.

ID Context
order (C)

Duration
order (D)

Extends Description

1 1 1 - First-order ergodic
D2 1 2 1 to second-order duration modelling
D3 1 3 D2 to third-order duration modelling
F2 2 2 1 to second-order ergodic
C2 2 1 1 to second-order different state context

C2D2 2 2 C2 to second-order duration modelling
C2D3 2 3 C2D2 to third-order duration modelling

X2 2 2 - Second-order ergodic, Extended/ORED
F3 3 3 F2 to third-order ergodic
C3 3 1 C2 to third-order different state context

C3D2 3 2 C3 to second-order duration modelling
C3D3 3 3 C3D2 to third-order duration modelling

X3 3 3 - Third-order ergodic, Extended/ORED
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C.3.2 Results on training data

Table C-20. The McNemar classification counts on 5s language recognition tr ials using 16 state HMMs (see Table C-19). The four values
at the intersection of a given pair of models represent the joint classification counts, as in Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3
1810 0 1646 164 1632 178 1653 157 1725 85 1700 110 1700 110 1711 99 1692 118 1740 70 1750 60 1773 37 1739 71 1

0 359 179 180 202 157 194 165 206 153 258 101 282 77 172 187 251 108 312 47 320 39 337 22 272 87
1825 0 1735 90 1727 98 1709 116 1740 85 1734 91 1695 130 1740 85 1760 65 1769 56 1791 34 1750 75 D2

0 344 99 245 120 224 222 122 218 126 248 96 188 156 203 141 292 52 301 43 319 25 261 83
1834 0 1703 131 1707 127 1739 95 1744 90 1692 142 1749 85 1764 70 1771 63 1801 33 1758 76 D3

0 335 144 191 224 111 219 116 238 97 191 144 194 141 288 47 299 36 309 26 253 82
1847 0 1731 116 1764 83 1765 82 1720 127 1774 73 1788 59 1793 54 1816 31 1769 78 F2

0 322 200 122 194 128 217 105 163 159 169 153 264 58 277 45 294 28 242 80
1931 0 1812 119 1816 115 1764 167 1795 136 1873 58 1873 58 1895 36 1837 94 C2

0 238 146 92 166 72 119 119 148 90 179 59 197 41 215 23 174 64
1958 0 1884 74 1765 193 1828 130 1900 58 1911 47 1927 31 1854 104 C2D2

0 211 98 113 118 93 115 96 152 59 159 52 183 28 157 54
1982 0 1775 207 1853 129 1905 77 1922 60 1952 30 1874 108 C2D3

0 187 108 79 90 97 147 40 148 39 158 29 137 50
1883 0 1766 117 1806 77 1822 61 1842 41 1816 67 X2

0 286 177 109 246 40 248 38 268 18 195 91
1943 0 1870 73 1886 57 1909 34 1854 89 F3

0 226 182 44 184 42 201 25 157 69
2052 0 2004 48 2021 31 1918 134 C3

0 117 66 51 89 28 93 24
2070 0 2048 22 1933 137 C3D2

0 99 62 37 78 21
2110 0 1966 144 C3D3

0 59 45 14
2011 0 X3

0 158
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Table C-21. The probability that observed differences between any two models arose by chance. Calculated according to the McNemar
test as applied to the counts of Table C-20. Models likely to differ in accuracy are shaded.

D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3

0.45 0.24 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1

0.56 0.15 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 D2

0.47 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 D3

<0.01 <0.01 <0.01 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 F2

0.11 <0.01 0.01 0.51 <0.01 <0.01 <0.01 <0.01 C2

0.08 <0.01 0.37 <0.01 <0.01 <0.01 <0.01 C2D2

<0.01 0.01 <0.01 <0.01 <0.01 0.07 C2D3

<0.01 <0.01 <0.01 <0.01 <0.01 X2

<0.01 <0.01 <0.01 <0.01 F3

0.11 <0.01 0.01 C3

<0.01 <0.01 C3D2

<0.01 C3D3
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Table C-22. The McNemar classification counts on 45s language recognition tr ials using 16 state HMMs (see Table C-19). The four
values at the intersection of a given pair of models represent the joint classification counts, as in Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3

314 0 307 7 308 6 310 4 314 0 314 0 314 0 310 4 312 2 314 0 314 0 314 0 314 0 1
0 25 12 13 13 12 13 12 20 5 22 3 22 3 13 12 23 2 24 1 25 0 25 0 22 3

319 0 315 4 314 5 317 2 318 1 319 0 310 9 318 1 319 0 319 0 319 0 319 0 D2
0 20 6 14 9 11 17 3 18 2 17 3 13 7 17 3 19 1 20 0 20 0 17 3

321 0 316 5 319 2 321 0 321 0 312 9 320 1 321 0 321 0 321 0 320 1 D3
0 18 7 11 15 3 15 3 15 3 11 7 15 3 17 1 18 0 18 0 16 2

323 0 321 2 323 0 323 0 317 6 322 1 323 0 323 0 323 0 323 0 F2
0 16 13 3 13 3 13 3 6 10 13 3 15 1 16 0 16 0 13 3

334 0 333 1 333 1 322 12 332 2 334 0 334 0 334 0 333 1 C2
0 5 3 2 3 2 1 4 3 2 4 1 5 0 5 0 3 2

336 0 335 1 323 13 334 2 336 0 336 0 336 0 335 1 C2D2
0 3 1 2 0 3 1 2 2 1 3 0 3 0 1 2

336 0 322 14 334 2 336 0 336 0 336 0 335 1 C2D3
0 3 1 2 1 2 2 1 3 0 3 0 1 2

323 0 322 1 323 0 323 0 323 0 323 0 X2
0 16 13 3 15 1 16 0 16 0 13 3

335 0 335 0 335 0 335 0 334 1 F3
0 4 3 1 4 0 4 0 2 2

338 0 338 0 338 0 336 2 C3
0 1 1 0 1 0 0 1

339 0 339 0 336 3 C3D2
0 0 0 0 0 0

339 0 336 3 C3D3
0 0 0 0

336 0 X3
0 3
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Table C-23. The probability that observed differences between any two models arose by chance. Calculated according to the McNemar
test as applied to the counts of Table C-22. Models likely to differ in accuracy are shaded.

D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3

0.36 0.17 0.05 <0.01 <0.01 <0.01 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 1

0.75 0.42 <0.01 <0.01 <0.01 0.52 <0.01 <0.01 <0.01 <0.01 <0.01 D2

0.77 <0.01 <0.01 <0.01 0.82 <0.01 <0.01 <0.01 <0.01 <0.01 D3

0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 F2

0.63 0.63 <0.01 1.00 0.13 0.06 0.06 0.63 C2

1.00 <0.01 1.00 0.50 0.25 0.25 1.00 C2D2

<0.01 1.00 0.50 0.25 0.25 1.00 C2D3

<0.01 <0.01 <0.01 <0.01 <0.01 X2

0.25 0.13 0.13 1.00 F3

1.00 1.00 0.50 C3

1.00 0.25 C3D2

0.25 C3D3



Appendix C Statistical significance tests 147

147

C.3.3 Testing set results

Table C-24. The McNemar classification counts on 5s language recognition tr ials using 16 state HMMs (see Table C-19). The four values
at the intersection of a given pair of models represent the joint classification counts, as in Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3
171 0 156 15 156 15 152 19 156 15 149 22 149 22 160 11 154 17 150 21 143 28 142 29 153 18 1

0 76 40 36 43 33 36 40 31 45 44 32 43 33 27 49 43 33 40 36 45 31 47 29 44 32
196 0 185 11 172 24 167 29 170 26 165 31 171 25 175 21 166 30 164 32 164 32 169 27 D2

0 51 14 37 16 35 20 31 23 28 27 24 16 35 22 29 24 27 24 27 25 26 28 23
199 0 177 22 166 33 168 31 166 33 176 23 180 19 170 29 167 32 165 34 171 28 D3

0 48 11 37 21 27 25 23 26 22 11 37 17 31 20 28 21 27 24 24 26 22
188 0 159 29 164 24 161 27 167 21 176 12 158 30 158 30 156 32 163 25 F2

0 59 28 31 29 30 31 28 20 39 21 38 32 27 30 29 33 26 34 25
187 0 165 22 163 24 156 31 160 27 163 24 156 31 153 34 160 27 C2

0 60 28 32 29 31 31 29 37 23 27 33 32 28 36 24 37 23
193 0 178 15 159 34 169 24 162 31 161 32 160 33 166 27 C2D2

0 54 14 40 28 26 28 26 28 26 27 27 29 25 31 23
192 0 159 33 169 23 161 31 159 33 162 30 164 28 C2D3

0 55 28 27 28 27 29 26 29 26 27 28 33 22
187 0 169 18 160 27 158 29 156 31 167 20 X2

0 60 28 32 30 30 30 30 33 27 30 30
197 0 167 30 161 36 159 38 171 26 F3

0 50 23 27 27 23 30 20 26 24
190 0 168 22 164 26 161 29 C3

0 57 20 37 25 32 36 21
188 0 175 13 155 33 C3D2

0 59 14 45 42 17
189 0 155 34 C3D3

0 58 42 16
197 0 X3

0 50
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Table C-25. The probability that observed differences between any two models arose by chance. Calculated according to the McNemar
test as applied to the counts of Table C-24. Models likely to differ in accuracy are shaded.

D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3

<0.01 <0.01 0.03 0.03 0.01 0.01 0.01 <0.01 0.02 0.06 0.05 <0.01 1

0.69 0.27 0.25 0.78 0.69 0.21 1.00 0.50 0.35 0.43 1.00 D2

0.08 0.13 0.50 0.43 0.06 0.87 0.25 0.17 0.24 0.89 D3

1.00 0.58 0.69 1.00 0.16 0.90 0.90 1.00 0.30 F2

0.48 0.58 0.90 0.26 0.78 1.00 0.90 0.26 C2

1.00 0.53 0.68 0.79 0.60 0.70 0.69 C2D2

0.61 0.58 0.90 0.70 0.79 0.61 C2D3

0.18 0.79 1.00 0.90 0.20 X2

0.41 0.31 0.40 0.89 F3

0.88 1.00 0.46 C3

1.00 0.36 C3D2

0.42 C3D3
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Table C-26. The McNemar classification counts on the NIST’95 45s language recognition tr ials using 16 state HMMs (see Table C-19).
The four values at the intersection of a given pair of models represent the joint classification counts, as in Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3

32 0 31 1 32 0 30 2 31 1 31 1 31 1 31 1 32 0 31 1 30 2 31 1 31 1 1
0 7 5 2 4 3 5 2 5 2 5 2 6 1 3 4 6 1 4 3 5 2 6 1 4 3

36 0 35 1 35 1 34 2 34 2 34 2 34 2 35 1 34 2 33 3 34 2 35 1 D2
0 3 1 2 0 3 2 1 2 1 3 0 0 3 3 0 1 2 2 1 3 0 0 3

36 0 34 2 35 1 34 2 34 2 33 3 36 0 35 1 34 2 35 1 35 1 D3
0 3 1 2 1 2 2 1 3 0 1 2 2 1 0 3 1 2 2 1 0 3

35 0 33 2 34 1 34 1 33 2 34 1 33 2 33 2 33 2 34 1 F2
0 4 3 1 2 2 3 1 1 3 4 0 2 2 2 2 4 0 1 3

36 0 34 2 34 2 32 4 36 0 35 1 34 2 36 0 34 2 C2
0 3 2 1 3 0 2 1 2 1 0 3 1 2 1 2 1 2

36 0 36 0 32 4 35 1 33 3 33 3 34 2 33 3 C2D2
0 3 1 2 2 1 3 0 2 1 2 1 3 0 2 1

37 0 32 5 36 1 33 4 34 3 35 2 33 4 C2D3
0 2 2 0 2 0 2 0 1 1 2 0 2 0

34 0 33 1 32 2 31 3 32 2 33 1 X2
0 5 5 0 3 2 4 1 5 0 2 3

38 0 35 3 35 3 37 1 35 3 F3
0 1 0 1 0 1 0 1 0 1

35 0 34 1 35 0 34 1 C3
0 4 1 3 2 2 1 3

35 0 35 0 33 2 C3D2
0 4 2 2 2 2

37 0 34 3 C3D3
0 2 1 1

35 0 X3
0 4
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Table C-27. The probability that observed differences between any two models arose by chance. Calculated according to the McNemar
test as applied to the counts of Table C-26. Model F3 differ significantly (97% confidence) from model 1.

D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3

0.22 0.13 0.45 0.22 0.22 0.13 0.63 0.03 0.38 0.45 0.13 0.38 1

1.00 1.00 1.00 1.00 1.00 0.50 0.63 1.00 1.00 1.00 1.00 D2

1.00 1.00 1.00 1.00 0.63 0.50 1.00 1.00 1.00 1.00 D3

1.00 1.00 0.63 1.00 0.38 1.00 1.00 0.69 1.00 F2

1.00 1.00 0.69 0.50 1.00 1.00 1.00 1.00 C2

1.00 0.69 0.63 1.00 1.00 1.00 1.00 C2D2

0.45 1.00 0.69 0.63 1.00 0.69 C2D3

0.22 1 1 0.45 1 X2

0.25 0.25 1 0.25 F3

1 0.5 1 C3

0.5 1 C3D2

0.63 C3D3


