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Abstract

Currently, first-order hidden Markov models (HMMs) form the badkbone aound
which most automatic speech processing applicaions are built. Their higher-order
extensions are known to be more powerful, but, due to their complexity and
computational demands, they are seldomly used. It is the purpose of this work to

advancetheir application

In this work we unify HMMs of all orders by deriving and proving the ORder
rEDucing (ORED) algorithm. This algorithm will reduce any higher-order HMM
(also mixed-order) to an equivalent first-order representation. This makes it possble
to process any higher-order HMM using known first-order algorithms, thereby
making unrecessary the aurrent approach of extending specific HMM algorithms to
specific higher orders. It also provides an alternative theoretical basis to reason about
high-order HMMs. From this perspedive high-order transition probabilities are
simply powerful mathematical specificaions of first-order topology. We use this

insight to explain old topologies and to design new ones.

We aldress computational concerns by developing the Fast Incremental Training
(FIT) agorithm. This algorithm avoids training redundant high-order probabilities by
noting which lower-order transition probabilities are zeo. This considerably reduces
the memory and processor requirements during training. In addition, the resultant

models have far fewer parameters and generali se better on previously unseen data.

To show the pradical applicability of our methodology we gply it to automatic
language reagnition. We find that it compares well with systems that require

expensive transcribed databases (our system does not require this).



Opsomming

Tans vorm easte orde verskuilde Markov modelle (HMMs) die ruggaa waaom
meeste outomatiese spraskverwerkingstelsels gebou word. Dit is bekend dat hoér orde
modelle kragtiger is, maa vanweé hulle kompleksiteit en verwerkings-vereistes word

hulle selde gebruik. Hierdie werk het ten doel om hulle toepassing te bevorder.

Met die daastelling en bewys van die orde-reduserings-algoritme (ORED), word
HMMs van alle ordes verenig. Hierdie algoritme redusea enige hoér orde HMM (ook
gemengde orde) na ‘n ekwivalente eeste orde voorselling. Dit maak dit moontlik om
enige hoé& orde HMM met behulp van easte orde dgoritmes te verwerk. Daadeur
word die huidige benadering waamee spesifiecke HMM algoritmes tot spesifieke
ordes uitgebrei word, oorbodig. Dit verskaf ook ‘n aternatiewe teoretiese basis
waauit oor hoé& orde HMMs geredeneea kan word. Vanuit hierdie perspektief is hoér
orde oorgangswaaskynlikhede maa net kragtige wiskundige spesifikasies van easte
orde topologié. Hierdie insig verklaa bekende topologié en word gebruik om nuwes

te ontwerp.

Hoé verwerkings-vereistes word beperk met ‘n vinnige inkrementele afrig-algoritme
(FIT). Hierdie algoritme bespeur en vermy oortollige hoé  orde
oorgangswaaskynlikhede deur te let op laer orde oorgangswaaskynlikhede wat nul
is. Dit verminder die geheue- en verwerkingsvereistes aansienlik. Verder is die
resulterende modelle meer kompak. Hulle veralgemeen ook beter wannee hulle op

nuwe data toegepas word.

Die praktiese bruikbaarheid van hierdie tegnieke word gestad deur dit toe te pas op
outomatiese tadherkenning. Sonder om tydens afrigting transkripsies te gebruik,

vergelyk die stelsel goed met huidige stelsels wat wel transkripsies nodig het.
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Chapter 1 Purpose, objectives and contribution

1.1 Motivation for and topicality of the research

Before we begin a detailed discusson on the subjed, we note some perspedives of a

few well-known authors on higher-order hidden Markov Models (HMMs)*:

In his book on Speedr Communication, O’ Shaughnessy (1990 p. 461)
comments on this by noting that “Higher-order Markov processes could
exploit restrictions on which sounds may occur in sequence within words, but
the computationd complexty of such models has thus far preduded their

apdicationto acoustical analysisin ASR".

In their handbook, Deller, Proakis and Hansen (1993 p. 681) suppdy only a
single remark in a footnote: “... in theory, nathing predudes dependence upon
N past states, but the complexty of training this model and recgrnition wsing

it increases dramatically with each increment ....”.

Juang and Rabiner (1992 p. 544) devotes a full paragraph to the topic: “Until
now almost all HMM formulations for speed recogntion ae based on a
simple first-order Markov chain. ... When anHMM is used in higher levds of
a recogntion system, such as g/ntactic or semantic processing, the first-order
formulation turns out to be inadequéate. ...Althoughthe structural simplicity of
a first-order model makes the computation simple and straightforward, there

may be a need to complete the andytical framework of higher-order models.

! These quotations represent the only discusson of high-order HMMs in these references.
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Also, for such higher-order models to be practically useful, many of the
implementationd advantages of the first-order case may have to be

formulated in an appopriate manrer.”

These quotations highlight advantages that may be obtained from the longer past Sate
sequence that a high-order HMM takes into aceount when making a transition. There
are many situations where apattern recognition system can benefit from incorporating
longer-term dependencies in the data that it is modelling. Viewing our world through
first-order HMM spedacles, is equivalent to saying that what is going to happen rext,
is dependent only on the here-and now. When humans communicate, this is obviously
not true. The physical constraints on speed production, as well as the necessity to
make our language robust, gave rise to longer-term structure. Our expedation of

future sounds isrooted in afar larger context than just current events.

These quotations next focus on the vastly increased computational requirements of
higher-order HMMs as the reason for their ailmost total absence from literature. The
need expressed in the last part of the quotation from Juang and Rabiner (1992 is the
primary inspiration for this reseach. In this work we expand the analytical framework
of high-order HMMs and develop tedniques to address ®me of the problems
indicated by Juang and Rabiner. We ae ale to show practical application of higher-

order HMMs to red-world speech problems.

1.2 Statement of the problem

Very little literature is available on high-order HMMs, and what is available, is
specificdly concerned with extensions to seand-order (He, 1988 Kriouile, Mari and
Haton, 1990. The airrent piecemeal approad to extending HMM algorithms to

higher order has ome shortcomings. Current approaches implement specialised
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algorithms for eacn HMM order, which must cetainly have impeded its widespread
use. It aso fetters a wider perspedive on HMMs irrespedive of order; fundamental
guestions, such as whether HMMs of different order have equivalent representational
cgoacity, or should be considered as different subdivisions on the larger tapestry of
the Chomsky hierarchy of languages, are not immediately evident. During the late
seventies, effedive implementation catapulted first-order HMMs to the front line of
speech processing. On higher-order HMMs, the at <till needs to progressbeyond just
adknowledging that they are very expensive. Little is known about their training

behaviour and possibilities for efficient implementation.

1.3 Research objectives

Thiswork ams to:
» find aunifying perspedive linking HMMs of all orders,

» find a tedhnique fadlitating efficient training of high-order HMMs while & the

same time maintaining or enhancing its quality,

» demonstrate the practical applicability of these tedhniques using a non-trivial real-

life problem.

1.4 HMM concepts

In subsequent sedions of this chapter we discussthe literature on high-order HMMs
and also provide an overview of our own reseach. The discussion here will
concentrate on the neaessary key concepts, leaving the details and mathematicd

treatment to Sedion 2.2.

We use HMMs (for a good introduction see Rabiner & Juang, 1985 to model a

sequence of observations and their relationship to ead other. For our purpose these
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are descriptions of short conseautive speech segments that together describe awhole
utterance An HMM models utterances like these with a finite number of states. Each
state has a probability density function (pdf.) describing the nature of the speech that
it asciates with. These pdf.s are indicaed in Figure 1-1 by f, where i is the state
number. Having described the individual sounds, the way in which they may combine
is described by arrows that join states. The probability of such a cmbination is

indicated by the a’sin Figure 1-1 and Figure 1-2.

Figure 1-1. Part of afirst-order HMM . The pdf. f, describes featuresfrom
statei.

Figure 1-2. The seoond-order version of the HMM in Figure 1-1.

In Figure 1-1, the transition to state k depends only on the arrent Sate j, thereby

making a, afirst-order transition probability. In Figure 1-2, however, the terms a;,
and & describe the probability of making a transition to state k given that the aurrent

state is j and the previous one was respedively i or h. Because two prior dates are
taken into acount when making the transition to the destination state k, these ae
seoond-order transition probabilities. The order of the model therefore specifies the

context (history) that is being taken into account when deciding on the gpropriate
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combination of states. Using the first-order transition probability (a, ) in Figure 1-1,

we will not be avare of whether the prior state was h or i when making a transition
from j to k. The seacond-order transition probabilities explicitly acount for this extra
context. As will be seen later, computational cost increases exponentially with the
order of the HMM, making high-order modelling very expensive indeed. There ae

threemodes of applying (first-order) HMMs (Rabiner & Juang, 1985:

*  When we use HMMs to classify observation sequences, we asume that the
observation sequence was generated by one of them. To dedde which one, we
neal to evaluate the likelihood of each of them producing this observation
sequence. The HMM formulation, however, “hides’? the exact state sequence that

generated the data by means of the pdf.s f,. Taking the contribution of all

possible state sequences into aacount is intradable when done in a naive way. The
efficient way in which the Baum-Welch algorithm, and its (close) approximation,
the Viterbi algorithm does this, caapulted first-order HMMs to the principle tool

used in automeatic speech recognition.

o States and groups of states are often associated with concepts like phonemes and

words. Since the recovery of those concepts from alarger observation sequence

2 Hencethe name hidden Markov model. It isthis characteristic that distinguishes HMMs from Markov
chains and N-gram models. Sedion 2.2.4 expands on the similarities of, and dfferences between, these
topics.
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(speech) is of prime importance in some gplicaions, we neel to be ale to
determine the state sequence most likely to have generated an observation
sequence. Since the Baum-Welch algorithm simultaneously considers all state
sequences, it is not useful for this. The Viterbi algorithm, however, specifically
only considers the most likely state sequence, making it an obvious choice for

doing segmentation (or deaoding) of a larger observation sequence.

» Lastly, we should be ale to optimise or train the parameters of an HMM to
optimally reflect the observation sequences it represents. Embedding either the
Baum-Welch or the Viterbi algorithms in an expedation-maximisation (EM)
algorithm (Dempster, Laird & Rubin, 1977 results in the so-called re-estimation
equations commonly used to train HMMs with. These algorithms are guaranteed
to yield a locally optimal solution, but are not necessrily globally optimal

(Levinson, 1985.

1.5 Prior work on high-order hidden Markov models

Due to the difficulties associated with higher-order HMIMs, literature® is (surprisingly)
gparse. In this sction we discuss these without much reference to our reseach,
thereby sketching the badkdrop against which this gudy has taken place We will,
however, in Sedion 2.6 return to this topic to provide more perspedive on the

relationship of our reseach to the existing literature.

% In this sedion we will not concern ourselves with Markov chains or N-gram models, but will only
focus on the available literature on higher order HMMs (see Sedion 2.2.4 for a discusson of these
concepts).
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The ealiest reference found is by He (1988. He uses a twofold product of the
original state spaceto derive asecond-order Viterbi algorithm with. He also indicates
that extending the Viterbi algorithm to even higher orders, follows along the same
lines as the extension to second-order, but does not present such results. In a related
pulicaion Kundu, He and Bahl (1988 report improved recognition of hand-written

words, using this algorithm to redtrict the available letter combinations.

Kriouile, Mari and Haton (1990 extend the available techniques by deriving an
extended Baum-Welch re-estimation algorithm specific to secnd-order discrete
HMMs. They compare the use of first-order versus snd-order HMMs in an isolated
digit recognition experiment. The popular “left to right, one state skip” topology was
used for ead digit model. Doing the tests in multi-spegker mode, they were able to
deaease the recognition error by 75% by using second-order HMMs (From 96% to
9% acarrate). In speaker-independent mode they also obtained slightly better results
(91% to 93% acarate). They also demonstrate a third model termed as a “transition
equivalent model”. This model, which is not as acairate as their seand-order models,
has a transition structure similar to that obtained using our ORder rEDucing (ORED)

algorithm (to be detailed in Sedion 2.3).

In a series of papers, seoond-order HMMs were next applied to continuous geech
reagnition (Mari & Haton, 1994 Mari, Fohr & Junqua; 199%; Mari, Haton &

Kriouile, 1997). They focus on the enhanced duration modelling cgpabil ities of these
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models as primary fador in their enhanced performance pointing out similarities®
with Ferguson models (Ferguson, 1980. The self-loops on first-order HMM states are
poor duration models, allowing the occurrence of singular state alignments when
observations are matched to the wrong model. The extra time step available in the
state history of second-order HMMs avoids this difficulty for one alditional time step,
thereby preventing such singular state alignments. Using second-order HMMs to
recognise letters in a @ntinuously spelled name task, Mari et al. (199%) dlightly
improve the acaracy compared with the use of first-order HMMs. Also in a
continuous phoneme recognition task, they show a slight improvement. From our own
experience (Du Preez 1991a) we can confirm the advantages of employing better
duration modelling in continuous recognition tasks. We do, however, believe that
explicit duration modelling (Levinson, 1986 is a viable alternative to bringing the full

power of higher-order HMMs to bea on this problem®.

This viewpoint is confirmed by Mari et al. (19%4, 1997) in an experiment on
conrected dgit reaognition. Although in a dired comparison, the second-order
HMMs improve on the results from first-order HMMSs, this is no longer the cae when
the first-order model employs durational postprocessing. These papers are the first
that we ae avare of that mention the cncept of a first-order HMM that is equivalent
to a second-order HMM . This order reduction is based on mapping the original states

into atwofold Cartesian product of states (compare Figure 1-2 with Figure 1-3 for an

* High-order HMMs are much more powerful than Ferguson models. They can however be constrained
to produce Ferguson models. Sedion 2.5 deds with this and other useful topologies.

> We do however find the rlationship between high-order HMMs and duration modelling, intriguing
and devote Sedion 2.5.2 to its discusson.
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example). This is a very intuitive notion, also noticed by Howard (1972 p. 4) in the
context of Markov chains. No formal algorithm® is, however, given in any of these
references. After illustrating such a first-order equivalent for a three ate left-to-right
seoond-order HMM, Mari et al. favour extending the Viterbi and Baum-Welch
algorithms to second-order over using first-order equivalents. As reason for this they

motivate that the latter dramatically increases the number of states.

To summarise, previous work (He, 1988 Kriouile et al., 1990 Mari et al., 199,
1996 1997 focused on exending dgorithms for processing secondorder HMMs.
Although the authors indicate that extension to agorithms for HMMs of order higher
than two will follow a similar pattern as the extension to seand-order, no such
algorithm is presented. Although they are avare of the possbility of reducing second-
order HMMs to equivalent first-order models, on the grounds of the resulting increase
in the number of states, they prefer rather to use dgorithms gpecifically extended to

sewnd-order.

1.6 Overview of this research

This ®dion provides a high-level summary of the work done in this reseach. The
discussion will focus on the main concepts and issues, details and motivations are
reserved for discussion in later chapters. Chapters 2, 3 and 4 closely follow the
reseach objedives st out in Sedion 1.3 namely a unifying perspedive, efficient
implementation and pradical applicability. The following three subsedions outline

these dhapters.

® Aswe shall seein Sedion 2.3.1, such an algorithm involves quite afew intricacies,
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1.6.1 The ORder rEDucing (ORED) algorithm

In Figure 1-2 the second-order transition probability a,, describes the probability of

making a transition to state k given that the arrent state is j and the previous one was
i. First-order transition probabilities like a, involve only the two statesthat are joined
by them. In contrast, the second-order dependence of a, on state i, cannot be inferred
from its adjoining states but is only encoded in the subscripts of the transition
probability itself. Let us now credge a new model with states corresponding to pairs of
linked states from the original model, as is illustrated in Figure 1-3. Each state shares
the same pdf. as the second one of the original pair of states does. Transition
probabilities are inserted between the states that respedively match the first and the

last two subscripts of the transition probability e.g. a,, is inserted between states (i)

and (j,Kk).

Figure 1-3. Mapping theoriginal states of Figure 1-2 into their twofold Cartesian
product implicitly adds one extra step of state history to the model.

Now the indexes of the states adjoining the seand-order transition probability fully
describe the subscripts of this transition probability. This effedively means that we
can now interpret a, as afirst-order transition probability joining states (i,j) and (j,K).
By enlarging the number of states in the way we did, we were &le to reduce
effedively the order of the model by one, without losing any representational

cgpability. This simple observation forms the basis of the ORder rEDucing (ORED)
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algorithm, which is detailed in Sedion 2.3.1. If we ae &le to reduce asecond-order
model to a first-order model, it should also be possble to do so for models of higher
order. Sedion 2.3 confirms that this is indeed so. An illustration of this processis
given by the third-order HMM of Figure 2-12 (p. 46) which is reduced to an
equivalent first-order version given by Figure 2-14 (p. 47). However, the proper
handling of higher orders, initial conditions (the first transition in the model by
necessity is of first order) and the desire to process models of mixed-order, introduce
guite afew intricacies to the algorithm that are not evident from the intuitive notion

on which it is based. These complexities are detailed in Chapter 2.

Although related to the @ove literature, this approac differs in fundamental respeds.
Instead of increasing the order of spedfic algorithms to specific orders (only seand-
order in the literature), this algorithm reduces all higher-order HMMs to equivalent
first-order versions. This has a number of important implicaions. These ae now

outlined:

On a pradical level this allows the apgication of any standad HMM algorithm to
any higher-order HMM, gredly enhancing the usefulness of this tednology.
Although concerns were expressed about the effed the increase in the number of
states might have (Mari et. al, 1994, 1997), we show in Sedion 2.6 that it does not

contribute in any way to additional computational requirements.

On atheoretical level, it provides a unifying paradigm for reasoning about HMMs of
any order because it makes the relationship between HMM topology and HMM order
explicit. Using this insight, HMMs can be designed using higher-order spedfications

and then reduced to make itstopology explicit using a first-order equivalent model.
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For example, in Sedion 2.5.2 we present a mixed order model that constrains higher-
order transition probabilities to specificdly model state repetitions (duration),
irrespedive of past history, while restricting the transitions between distinct states to
first-order (seeFigure 2-15 p. 49). This results in a Ferguson model (Ferguson, 1980
as its first-order equivalent (Figure 2-16 p. 49). This topology plays an important role
in later work. In Sedion 2.5.3 we develop the natural counterpart of the dove
duration model. We design a model that is guaranteed always to take a fixed context
of distinct prior states into acount irrespedive of their possible repetitions (see
Figure 2-18 p. 51 for asimple example, with its first-order equivalent shown in Figure
2-19 p. 52). This mixed order model has enhanced capabilities for modelling

sequences of distinct states and also plays akey role in later work.

1.6.2 The Fast Incremental Training (FIT) algorithm

As arealy mentioned, high-order HMMs can be vastly more expensive than their
first-order counterparts. The processing and memory requirements are serious issues
that can easily place such a model outside the available cmmputing cegpacity. Typicaly
though, the transition structure of a high-order HMM is quite sparse. Becaise it may
be difficult to tell, prior to training, which transitions will be redundant, training
normally commences with all the transitions that are potentially useful. For many
problems considerable training effort is therefore expended on estimating parameters
that will eventually become zeo. Referring bad to Figure 1-1 and Figure 1-2, it will
be realised that a single transition probability in the lower-order model, is simply
being replaced by a set of refined probabilities in the next higher-order model. 1t will
result in significant savings if the training of redundant sets of higher-order

probabilities can be avoided by noting which corresponding lower-order probabilities
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are zeo. This observation forms the basis of the Fast Incremental Training (FIT)

algorithm, detailed in Sedion 3.2.2 and summarised below:
1) Setupafirst-order HMM for the gplication at hand.

2) Run the training algorithm on the first-order model. Non-viable transitions will
disappea.

3) Convert the optimised first-order model to a seaond-order model by expanding the
subscripts of the remaining non-zero transition probabilities with one extra prior
state. These expanded transition probabilities are initialised with the value of the

lower-order transition probability they were extended from.
4) Usethe ORED algorithmto crede afirst-order equivalent of this model.

5) Now, by repeding the algorithm from step 2, train this model. This will refine the
transition probabilities to their required higher-order values. Repeding this

processtrains siccessvely higher-order models.

The @ove formulation is geaed towards training fixed-order HMMs. In Sedion 3.3
we also extend it to include cetain useful mixed-order topologies. Specifically, we
can aso efficiently train the duration models of Sedion 2.5.2, the mntext models of

Sedion 2.5.3, or any combination of them, by using the FIT agorithm.

Because the FIT algorithm does not utilise the same initial conditions’ as models
trained via extended algorithms or the ORED reduction®, local optima may cause the

trained models to vary. In Sedion 3.5 we use well-controlled simulation experiments

" They cannot sincethey do not even have the same number of initial parameters.
8 We will refer to these (equivalent) approaches as the extended/ORED approach.
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to investigate the quality of FIT models relative to that of the extended/ ORED
approach. Subsequent work on real speech (see Sedion 4.6) confirms the results in a
real-life situation. We find that, not only is the FIT approach much more dficient (up
to an order of magnitude faster), but it also results in much more wmpact models that

generali se better to unseen data.

1.6.3 Practical application to language recognition

To show that the concepts developed in Chapters 2 and 3 are indead applicable to
non-trivial real-life situations, we gply them to automatic language recognition in
Chapter 4. Our ALR system distinguishes itself from most others (see Sedion 4.2 for
ALR literature) in that it requires no transcription of the training database, making it
much easier to expand to new languages. Two sets of experiments were conducted.
Common aspects like the database, signal processing and training procedures, are

discussed in Sedions 4.3 to 4.5.

The first set of experiments (Sedion 4.6) was concerned with verifying the results of
the simulation experiments of Chapter 3. To do this, sixteen-state egodic HMMs of
second- and third-orders were trained on English and Hindi speech® using both the
extended/ORED and the FIT approadies. A first-order version served as baseline
reference The results confirm those of the simulations of Chapter 3. For example,
training athird-order FIT model requires 13% of the memory, and 7% of the CPU that

would be expended on extended/ORED training. The resultant FIT model is twenty

° From the OGI- TS database, kindly supplied to us by the Oregon Graduate Institute.
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times smaller and yields an acaracy of 97.4% compared to the 89.7% of its

extended/ ORED counterpart.

In aseocond set of experiments (Sedion 4.7) we gplied some of the explicit duration
and context modelling mixed-order HMMs, as well as combinations of them, to the
ALR task. All training is performed via the FIT algorithm. All the topologies have
been proved to be practically viable. Duration modelling proved useful throughout.
Modelling a @ntext of distinct states is promising, but appeas to require larger
training databases. This can be explained by noticing that this model will reflect
longer state histories than a normal fixed-order model will, thereby increasing the size
of the required database. Due to the limited test set, statistically significant differences
were only deteded between the baseline first-order model and several of the higher-

order models.

When we mmpare our ALR approach to others (see Sedion 4.8) we find that it is
better than previous systems not requiring transcriptions (Lund, Ma & Gish, 1996,
and very competitive when compared to currently popular systems based on phoneme
reagnition followed by N-gram nodelling (Zissman, 199%; Kadambe &
Hieronymus, 1995. This is achieved in spite of the fad that many obvious

enhancements can be gplied to our ALR system (seeSedion 4.9).

1.7 Contribution of this work

1) Although the intuitive notion of reducing high-order HMMs to first-order
equivalents is not new, it has never been formalised before. The ORED

algorithm:
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2)

a)

b)

f)

provides a precise and verified description of the order reduction process

which is rather more intricate than what the underlying intuitive base would
SUgGESL,

includes mixed order models for which the notion of a first-order equivalence
IS new;

allows any higher-order HMM to be processed by using first-order algorithms;

provides a unifying viewpoint creding a wmmon framework in terms of

which HMMs of all orders can be mnsidered;
makes the interplay between Markov order and HMM topology explicit;

makes it possible to design HMM functionality using Hhgher-order
descriptions, afterwards reducing it to the gopropriate first-order topology. We

illustrate this with duration and enhanced contextual models.

Based on the ORED agorithm we develop the FIT algorithm which:

a)

b)

grealy reduces the mmputational requirements for training high-order HMMs
by training incrementally while avoiding redundant parameters, thereby

making the training of large systems pradicd.

results in much smaller'® models, thereby reducing the mmputational

resources required for applying it;

19 Fewer non-zero transition probabiliti es, making it more compact.



Chapter 1 Purpose, objectives and contribution 17

3)

c) makesthe resultant models less sisceptible to spedalising on the training ceta;
prior to this work specialisation in higher-order HMMs received no attention

inthe literature;
d) acommmodates certain well-defined mixed order topologies;

€) provides a flexible framework for applying combinations of various
enhancements such as independently controlling the mntext of distinct states

and the degreeof duration modelling used.
In the field of automatic language recgnition we show that:

a) high-order ergodic HMMs do produce competitive ALR systems that require

no training database transcriptions;

b) high-order HMMs can be used to design topologies that are well suited to the

phonotactic constraints utili sed in ALR systems;

c) thesetopologiescan be efficiently training viathe FIT algorithm.
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Chapter 2 High-order hidden Markov models

2.1 Introduction

Hidden Markov theory forms the badkbone of modern speech processing systems
(Young, 199%) and has been thoroughy investigated for a very wide range of
applicaions. In spite of this, very little literature exists on the use of the more
powerful second- and higher-order HMMs. A few extensions of the standard first-
order analysis and training algorithms to their second-order versions are known (He,
1988 Kriouile, Mari & Haton, 1990. Literature on third o higher-order models is

non-existent.

The main pupose of this chapter is to introduce and motivate the ORder rEDucing
(ORED) agorithm. This algorithm can transform any higher (fixed or mixed) order
HMM to an equivalent first-order version. As such it plays a unifying role for HMMs
of all orders and will play an important role in making this technology aceessible to

general speech processing and ather applications.

The necessary HMM badkground is creaed in Sedion 2.2. Notation, assumptions,
standard algorithms and their complexity are discussed. Sedion 2.3 introduces and
proves the ORED algorithm. Itsuseisillustrated in Sedion 2.4 with several examples
designed to enhance understanding the process Section 2.5 shows how the goplication
of the ORED algorithm can put interesting topologies in a new perspedive. It aso
introduces two new concepts namely the context order and the duration ader, which
serves to illuminate the caabilities of high-order HMMs. In Sedion 2.6 the eisting

literature on higher-order HMMs is examined from the viewpoint of the ORED
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algorithm. Some very real problems in high order hidden Markov modelling are

highlighted in Sedion 2.7.

2.2 HMM background

We now introduce the notations, conventions and mathematical preliminaries required

for presenting, proving and demonstrating subsequent algorithms.

2.2.1 Definition and notation

X; ={X.,X,,*X,,=-X,} IS an observation sequence or sring of length L, which
must be matched to the HMM. An HMM M is defined as a set of N conventional
emitting states, as well as an initial and terminal state that are so-cdled non-emitting
or null states, yielding a total of N +2 states. The symbols S and Q are variables
taking on the index value of the state under consideration. In normal HMMs this index
value will be ascalar, such as Q=i (single indexed). In the transformed models
developed in this chapter, composite values sich as Q=(i, j) (composite indexed)
will be used for intermediate indexing (see Sedion 2.3.1 p. 33). This composite
indexing is used to track state histories. Subscripts are used to spedfy the time &

which a cetain state occurs. An expresson such as S = will indicae the

occurrenceof the j th state at time ¢ . A sequence of states occurring from time m up

to time n will bedenoted by S . Time indexes lower than 1 or higher than L are not

asociated with physical time a is measured by the indexes of the observation string,

but rather indicate null states preceding or following the input string.

States are coupled by transitions, each with probabilities describing its likelihood of

occurring. The initial state will have no transitions entering it and the terminal state
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will have no transitions leaving it. Transition probabilities are indicated by the symbol
a, with subscripts to index the states involved. To distinguish between the transition
probabilities of the original higher-order models and its transformed equivalents, a

prime (') symbol is used for the former. For example, &, is the symbol used in the

original seaond-order HMM to indicae the probability of moving from state j to

state k, given that the precaling statewas i .

Different states may share aset of transition probabilities (Bahl, Jelinek & Mercer,
1983. This will be referred to as tied transtions, and simply means the transition
probabilities leaving from each of these states will be identical to that of every other

statethat it istied to.

Each emitting state'’ S has an assciated probability density function (pdf.)

f(x|S, M) which quantifies the similarity between a feaure vedor x and the state S.

For brevity, the i th pdf. will be identified asf, in the diagrams. The null states,

indicated in state diagrams by dashed circles, do not have pdf.s associated with them.
Transitions to them do not consume atime-step; this makes them useful tying points
for groups of states, enabling the use of single initial and termination states whil st
maintaining the functionality of the multiple cae. This simplifies the representation
by making the austomary inclusion of extra parameters to indicae multiple initial and
termination states unneaessary. It should also be pointed out that, since no time step is

needed to enter the first state (state O in the diagrams), the processinitially (already)

1 Another variant of the HMM exists which assciates the pdf.s with the transitions instead o the
states. Thisis termed the Mealy form whereas the version we describe and use throughout this work is
the Moore form (Déller et. al, 1993, p. 680). It is posshble to transform from one form to the other.
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occupies that state. This is contrary to the more conventional case where it is entered

only at the first time step.

In the following discussion, extensive use will be made of states that share pdf.s (Bahl
et al., 1983 Leeg 1989. This will be referred to as tied pdf.s. When states sare both

their transitions and their pdf.s, we will refer to them as tied states.

Some refledion will indicae that when states are tied, and the tied transitions leaving
from each of them also share a @mmon destination state, those tied states can be
replaced by a single state without affeding the operation of the model. We will term

this operation amerging of states. (The example in Appendix A demonstratesthis.)

2.2.2 HMM assumptions

The match between X; and M is quantified by the likelihood f(X[|M). To make

the alculation of such a quantity tractable, certain simplifying assuumptions are

necessary:

AS.1) The observation independence asumption states that
f(x,IX;, Q5L M) =1(%,1Q,, M). (2-1)

This means that the likelihood of the ¢th feaure vedor is dependent only on the
current state and is therefore otherwise unaffeded by previous gates and fedure

vedors. This assumption is not affeded by the order of the HMM.

AS.2) By definition, an HMM includes the Markov order assumption
PQIQ™, X" M) = P(Q,|Q:, M), (2-2)

where R isknown as the order of the HMM.
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This assumption states that any states or fedures, other than the identity of the
immediately preceding R states, do not affed the probability of occurrence of the

next state.

The vast majority of applications use R=1, resulting in a first-order HMM (HMM 1)
of which an example is shown in Figure 2-1. The probability of jumping to a specific
state at the next time step is dependent only on the state that is being occupied at the
current time. Therefore, only a single transition probability occurs on the link between
any two states. These probabilities are often presented as a matrix, and algorithms
used to cdculate the required likelihood need to keep tradk of only the behaviour of

states onetime step ealier (Poritz, 1988).

Figure 2-1. Base HMM 1. The pdf. f, describesfeaturesassociated with statei.
Since atransition to a next state is dependent only on the aurrent state, more subtle
restrictions on the alowable combinations of states are not effedively modelled
(He, 1988. In addition, the self-loops on the amitting states are poor duration models
in most practical applicaions (Levinson, 1986. The richer modelling capability
resulting from increasing the order of the model, can mitigate these difficulties (He,
1988 Mari et al. 1997. In Figure 2-2 the second-order version (HMM?2) of the
previous example is given. More predse modelling is now possible, but it comes at
the s of an increased number of transition probabilities. Note that, unlike the
HMM 1, both the previous and the aurrent state determine the @rred choice amongst

the number of alternative probabilities on a given transition. Typically these
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probabilities are represented in a ahbic structure, and the clculation of f(X; |M)

requires gecialised algorithms to tradk the longer history of states (Kriouile et al.,

1990.

Figure 2-2. Second-order version of the HMM in Figure 2-1.

By extending the value of R to even higher values, a longer history of states can be

taken into acount, resulting in a Rth-order model (abbreviated HMMR). If the order
of the probabilities on any transition is allowed to vary, a mixed-order HMM results.
In following sedions, a (possibly) mixed-order HMM with highest order R is

referred to as My, where R is the highest order transition probability present in the

model, be it of mixed- or fixed-order.

2.2.3 Standard HMM algorithms

There ae several excellent sources describing the mathematics and algorithms
applicable to HMM 1s (Rabiner & Juang, 1986 Levinson, 1985 Bahl et al., 1983
Poritz, 1988 Picone, 199Q Deller et al., 199). Relevant aspeds of this work are

highlighted here.

Three principle isaues are distinguished in HMM processing, namely the evaluation

problem, the deading problem and the training problem. The evaluation problem

concerns itself with how to determine the match between the observations X' and the

model M using the likelihood f(X;|M). Determining the single most likely state
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sequence acounting for X: is the domain of the deading problem. Lastly the

training problem is concerned with optimising the parameters of the model based on

the observations.

HMM processing is made non-trivial due to the “hidden” part indicated in its name.
Many different state sequences can ac@unt for a set of observations, but with varying

degrees. One gproacd for solving the first two problems would be to enumerate all

possible sequences of states Q;*. Determining for ead sequence the value of

f(X;,Q;™ |M) and then summing over al of them will solve the evaluation problem.
The single sequence that provides the biggest contribution will solve the decoding

problem. Unfortunately the number of possible sequences is proportional to N,
making this approad intradable. Using the asumptions discussed in the previous

sedion, this problem can be simplified as we now discuss

2.2.3.1 First-order solutions

Using the observation independence asumption (AS.1) and setting the Markov order

R=1 alow the introduction of an (intermediate) forward variable
a,(j)=f(X{Q,=jIM), as well as a related backward variable B,(j). The

advantage of doing this is that these variables can be efficiently caculated from their

previous values (Rabiner & Juang, 19862,

12 Only the general (iterative) expressons for the emitting states are mnsidered here. Boundary
conditi ons, described by additiona supplementary expressons are omitted, as they do not contribute to
the aurrent discusson.
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N+1

ay.4(]) :[Zaz(i)aij (X1 1Quy = uM), €20 (2-3)

N+1
BL’(I) = Zﬁzﬂ(j)aij f(X£+1 |Q£+1 = J’M) ’ f 2 0
e
This drastically reduces the computation required as compared to the gproadc of
enumerating all state sequences. Consider, for example, the operations involved in
calculating all the forward variables for a fully conneded (ergodic) HMM with a

separate pdf. on ead of the emitting states. The total number of operations involving

transition probabil ities is proportional to N°L while the number of pdf. calculations,
as well as the memory required to store the forward variables, is proportional to NL.
Either the memory requirements, or the pdf. calculations, can be avoided for the
badkward variables;, the number of operations involving transition probabilities is

similar to that of the forward variables.

From these forward and badkward variables the evaluation problem is lved using
the forward-badkward algorithm, detail s of which may be obtained from Rabiner and
Juang, (1986. Replacing the summation of (2-3) with maximisation results in
considering only the most likely state sequence This is formalised in the Viterbi
algorithm, which solves the decoding problem. Training can be acomplished by
iteratively using either the forward-badkward o the Viterbi algorithms to find the
current match between the observations and the model. The parameters of the model

are then updeted accordingly. These training procedures, termed Baum-Welch re-
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estimation and Viterbi re-estimation’®, are gplicaions of the more general
expectation-maximisation (EM) algorithms (Dempster, Laird & Rubin, 1977 used for
optimising statistical models. These tedhniques guarantee a improvement on ead
iteration. Unfortunately, the solution it converges to may only be alocal optimum. A

good tutorial on the EM algorithm is provided by Moon (1996).

2.2.3.2 Higher-order solutions

Algorithms extending the Baum-Welch and Viterbi approadhes to HMM 2s, have been
reported in literature (He, 1988 Kriouile, Mari & Haton, 1990 As in the first-order
case, the forward and badward equations play a entral role. The general form of the
second-order forward equetion is given by (the badkward equations follow a similar
pattern):
N+

(], K) =[;ag(i, Doy If(X,1 [Qu =kiM), 21 (2-4)
Although o reference ®uld be found to HMMs with orders higher than two, such

extensions are straightforward:

N+1

Ay (i3 ipa) = [Zaf(iﬂiZ’”'iR)ail,iZ,...iRﬂ]f(Xl?ﬂ Q. =R+1LM), (z2R-1 (2-5)

The algorithms utilising these variables can be extended to acoommodate the higher
dimensional structures. As these higher dimensional structures may be quite sparse, it

is important to implement measures to avoid redundant calculations (Mari, Haton &

13 Since the training process often neads extensive quantities of data, the faster Viterbi re-estimation
algorithm was used in this work.
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Kriouile, 1997). It is clear that processing higher-order HMMs can be very expensive.

For example, in higher-order ergodic HMMs the number of transition calculations are
proportional to N®L and the memory required to store the forward variables is

proportional to NFL . The pdf. calculations are unaffeded by the HMM order.

2.2.4 Different types of HMMs

We now discuss dimensions on which we distinguish between different types of
HMMs. We do not intend to provide a full taxonomy; new models are evolving

continually. The discusgon will be brief, with references for further investigation.

There ae three main sources which give rise to dfferent HMM variants, namely the
state pdf.s, the topology of the model (the structure dictating which states are coupled

to which) and the Markov order of the state transition probabilities.

1) Most variants find their origin in the type of pdf. used. Table 2-1 lists ome
examples. In thisreseach we ae not concerned with pdf. variants and thus restrict

ourselves to continuous (diagonal Gaussian) pdf.s.

2) The ultimate goplicaion of an HMM often determines its topology. Phoneme and
word models often use aleft to right form (see Figure 2-1 on p. 22, aso Young,
1996. Early language recognition systems employed a egodic HMM (see Figure
4-1 on p. 92, aso Savic, Acosta, & Gupta, 1991). When duration modelling is
important, Ferguson models can be used (seeFigure 2-17 on p. 50, aso Ferguson,
1980. One of the mntributions of this reseach, is to show that some a hoc
topologies are, in reality, the end-result of designs using hgher-order HMM

specifications.
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3) The final fador we consider is the Markov order of the model e.g. first-order,
second-order etc., (see Figure 2-12 on p. 46, also Mari et al., 1997). We have
arealy stated that the Markov order and the topology are related. The ORED
algorithm, to be discussed in 2.3.1, provides a mechanism to reduce ahigh-order

HMM to an equivalent first-order HMM, thereby making its topology explicit.

Combining the @ove gives rise to dverse models sich as (for example) a seond

order ergodc semi-continuowts HMM.

Table 2-1. HMM swith different pdf. types.

Density Type HMM Type Reference
Discrete Discrete Rabiner, Levinson & Sondhi, 1983
Continuous Continuous Juang, 1985
Continuous mixture Mixture density Juang & Rabiner, 1985
Tied mixture Semi-continuous | Huang & Jadk, 1989
Neural approximation | Hybrid Bourlard & Wellekens, 1990

2.2.5 Related concepts: Markov chains and N-grams

Markov chains and N-grams are concepts with a close relationship to HMMs. The
former is frequently used in statistical modelling (Leon-Garcia, 1989, while the latter
is currently very popular as the language model in large aitomatic speech recognition
(ASR) systems (Young, 1996. Although higher-order versions are possble, Markov
chains are mostly used in their first-order version. N-grams, on the other hand, are
specificdly popular in their higher-order forms. As we will soon see they adually
represent the same @ncept and are adegenerate cae of the HMM. To put the work
on higher-order HMMs here in proper perspedive, it is important to understand these

relationships.
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2.2.5.1 Markov chains

If, in an HMM, we mpletely ignore the notion of feaure vedors and pd.s
describing them, but instead focus only on the random state dhanges in the model, the
model would function as a Markov chain (Howard, 1971 Leon-Garcia, 1989 p. 437,
Deller, Proakis & Hansen, 1993 p. 682). In an HMM, the adivity of this underlying
Markov chain is obscured (hidden) by another stochastical process namely the pdf.s
that produce the observations. At first glance it would seem that the presence of the
pdf.sinthe HMM is the determining fador in making it “hidden”. The presence of the
pdf.s transforms a “singly” stochastic process (Markov chain) into a “doubly”
stochastic process(HMM). There is a cavea though. As can be seen from Figure 2-3
and Figure 2-4, any discrete HMM (see Sedion 2.2.4) can be written without any

explicit pdf.s.

Figure 2-3. Discrete HM M.

The difficulty with interpreting Figure 2-4 as a Markov chain is that the observation
symbol u is associated with both states (1,u) and (2,u). Similarly v is asociated with
both (1,v) and (2,v). With Markov chains the states of the model can be diredly

observed from its output. In the given example thisis clealy not possble.
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Figure 2-4. Discrete HM M without pdf.s.

Overlapping pdf.s lead to ambiguities in the chain, which is now the form in which
the hidden part of the HMM emerges. Any Markov chain can be represented as an
HMM, but then the pdf.s will not overlap. Stated dfferently, any HMM with ron-

overlapping pdf.sisnot really a hidden Markov model.

2.2.5.2 N-grams

In automatic speech reagnition (ASR) reseach, so-cdled “N-grams’ are quite
popular as language models (Bahl, Jelinek & Mercer, 1983 Levinson, 1985 Riccardi,
Pieraccini & Bocchieri, 1996. The function of these language models isto dictate (or
restrict) the allowable sequence of words, thereby reducing the perplexity™* of the
total recogniser. A tri-gram specificaion, for instance, will provide probabilities

P =P |w,w;) where w,w;,w, is a sequence of successve words. These N-

grams have some interesting associations (Levinson, 1989:

14 A measure related to entropy, describing the average “branching factor” (number of choices) at each
dedsion point. It quantifies the difficulty of the task. SeeBahl, Jinek and Mercer (1983) for details.
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1) Clearly, if there was no uncertainty about the identity of the fundamental units
under consideration (wordsin the above cae), these N-gram word orders could be
specified via ahigher-order Markov chain. However, the N-gram language model
is often integrated with lower level HMMs to form a single, large, monolithic

HMM.

2) Both HMMs and N-grams are instances of stochastic regular grammars (Chomsky

type 3 grammar).

The first point deals with the relationship between Markov chains and discrete hidden
Markov models, something we have alrealy discussed in the previous sedion. If the
caegory identities (words in this case) could be determined with absolute cetainty,
the ambiguity and hence “hidden” asped disappeas, resulting in a Markov chain. In
an ASR system, however, the word identities are uncertain. The N-gram probabilities
in this context are merely replacements for the adual probabilities coupling these
more nebulous categories. Their estimation is based on external deterministic
knowledge (via @unting and interpolation tediniques) and not on the atual

probabilistic caegories within the system.

The seaond point above is just a restatement in alternative terms of the first point.
Without digressing too far afield into the theory of stochastic grammars (Fu, 1982
Schalkoff, 1992), it can be said that an N-gram results in an unambiguous gochastic
regular grammar, whereas an HMM generally results in an ambiguous one. This
makes an N-gram a special degenerate cae of the HMM. Although it can be
processed, using normal HMM tedniques, the special requirements of the “hidden”
part of the HMM in reality is not necessary. If HMM forward-badkward re-estimation

is used to infer N-gram probabilities, only one state sequence is viable for any
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observation sequence From this, the re-estimation reduces to a smple @unting
procedure (Bahl et al., 1983). In contrast, for a general HMM this information is only
known in probabilistic terms, calling for more involved processing. Deller et al.
(1993 pp. 784-785) refleds on the relationship between stochastic regular grammars

and N-grams, but fails to take into ac@unt the role that ambiguity plays.

2.3 Reducing a high-order to an equivalent first-order HMM

Instead of finding algorithms for HMMs of different orders, the following algorithm
will transform any (mixed- or fixed-order) HMM to an HMM 1 that is mathematically
equivalent to the original. Proof of this equivalence is given in Sedion 2.3.3. The

underlying (and quite intuitive) ideais to map the states of the original HMM M,
using a twofold product of the original state space to a reduced model Mg_,.

Transitions in this new state spaceimplicitly have an extra time step of state history

specified, thereby reducing the order of the transition by one.

The basic notion is not new, Howard (1971, p. 4) writes in the mntext of standard (not
hidden) Markov processs that “... sippcse that the last two states occupied bah

influenced the transition to the next state. Then we @uld define a new process with

N? states — each state in the new process would correspondto a par of successve
states in the old process ...Any dependence of future behaviour on a finite amourt of
past history can, at least theoretically, be treated in the same way. ” The next sedion
though, makes this notion concrete with an explicit algorithm, while & the same time
extending it to hidden Markov models. As will become evident, there ae several

subtleties that arise during the acdualisation of this basic idea
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In the following discussion, statesin M, will be denoted by Q while the variable S
will be used for those in M_,. It will be ssumed that M has N emitting states,
augmented by initial and terminal null states, respedively denoted by Q=0 and
Q=N+1. All the state indexes of M, are asumed to be single (not composite)
values.

In Appendix A a detailed example is provided that illustrates the ORED agorithm.

Sedion 2.3.2 comments on the role of the different steps in the algorithm. Together

they are useful guides for studying this algorithm.

2.3.1 The ORder rEDucing (ORED) algorithm

1) Creaethe set of statesof M, :

a) Crede the states S=0,S=1...S=N+1 in M. (Only S=0 for
fixed-order)

b) For eat of the available higher-order (R'>2 with R’ the order)
transition probabilities a,; ; ~ present in the model, add the states
(i1s15), (igsi5)se--(ig»igsy) t0 M, without dugication.

c) If theterminal state Q = N +1 has transitions originating at more than
one state entering it and at least one of themis of higher order (R > 2),
creae anew terminal null state S= N +2.

2) Allocate transitions and their probabilities:
&) First-order probabilities &; :
If state S=(i,,i,) exists, identify all available states S=i, and

S=(,i,), 0<i<N+1 as Durce states for the transition.
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The transition probability & links eech of them to

destination state S=(i,,i,), resulting in transition

I

probabilities of the form &, ; ;) =a; and a;;.,, =&

I

If there is more than one source state, their links are tied.

Otherwise it is placed from source states S=i, and S=(i,i,) (as
defined above) to destination state S=i,, resulting in
transition probabilities of the form a; =a; and
&y, =&, - If there is more than one source state, their
links are tied.

b) Higher-order probabilities ai’lizmiR,ﬂ, R'=2: These probabilities

(one or more) are placal between states S=(i,_,ir) and

I

S=(ig,igs),thatis Qi i) 1ia)e (i iger) — Ry *
c) If a new terminal state S=N+2 has been creaed, create a unit
probability transition between source states S=N +1,

S=(i,N+1) and destination state S=N+2. Tha is

AnenyN+2) = B NenNe) = L
3) Ded state removal:
Remove all states that cannot be readied from the initial state or from
which the termination state cannot be readed (typically an iterative
algorithm is used for this). Redundant null states can also be removed

at this gage (optional).
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4) Allocae pdf.s.

a) Every existing state S=(i,k) and/or S =k shares'®, via parameter
tying, the same pdf. as date Q =k. That is, they are both ether
null states, or
f(x|S=kMqy) =f(X|S=(,k),Mgq,) =f(X|Q=k Mp).

b) If anew termination state S=N+2 was creaed, it isanull state.

5) lterate:

a) Rename all the composite state indexes to unque single indexes,
and modify the indexes in the transition probabilities acwrdingly.
The resulting model is the R-1th-order equivalent of the original
RtN-order model.

b) All of the &ove steps can be repeaded uwntil all transition
probabilities are subscripted by only two state indexes. By
definition this is an HMM 1. We show in Sedion 2.3.3 that it is
equivalent to the original higher-order model.

6) Merge states (Unnecessary for fixed-order HMMSs):

Merge tied states that have the same destination for ead of the shared

transitions. Renumber the states and transition probability indexes to

reflect the smaller number of states.

151f the Medy form HMM was used, a separate pdf. will be associated with each transition probabilit y.
This greatly escal ates the number of parametersin the mode.
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2.3.2 Notes on the ORED algorithm

The states created in step 1a) are needed as the beginning and/or end points for certain
of the first-order transition probabil ities which occur in a mixed-order model. Step 1b)
credaes the necessary states to ensure that one extra sep of state history is made
explicit in the new model. Step 1c) ensures that the model will have a unique
termination state. This gep is not drictly necessary, but results in a cleaner

representation.

Step 2a) inserts the first-order transition probabilities. When a first-order transition
probability a,; shares a transition with higher-order probabilities, it is necessary to

duplicae the first-order probability over the different contexts created to reduce the
order of the higher-order probabilities. This gontaneously leads to states saring
identical transition probabilities (so-cdled tied links). With fixed-order models no
such link tying should occur. Step 20) now reduces the order of the higher-order
probabilities by one by inserting them between states gecially creded to “remember”
implicitly one extra time step. There can be multiple probabilities associated with
eah transition. The sequence i,---i,_, IS used to enumerate those probabilities. Step
2c) refleds the desire to work with a single termination state and is included for a
cleaner representation. The null states leading to the termination state S= N +2 are

adually superfluous and may be optionally eliminated.

It may happen that some of the new states are not in a path leading from the initial to
the terminal state (see Sedion 2.4.3). Step 3) eliminates them. Since the pdf.
asciated with each state is not affected by the order of the model, step 4) must
ensure that the status quo is maintained in the new model. To make sure that the

model responds properly during training, replicaed pd.s must be implemented as
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shared. With the previous deps in the algorithm having reduced the order of the
model by one, step 5) merely uses reaursion to continue the process Step 5a) does the
necessary renaming to get the new model in the notation*® assumed by step 1). Step
5b) is the adual reaursion. Step 6) merges tied states that share the same transition
targets. This gep neals to be done on the final first-order model, since what might
appea to be the same target dtate a one of the intermediate stages of the algorithm,

might at alater stage split into different states.

2.3.3 Proof that the ORED algorithm results in equivalent first-

order models

As can ke seen from the aove, the normal Rth.order model, and ORED first-order

version, contain the same free parameters in a different structure. The following
proofs show that any higher-order HMM M (fixed- or mixed-order) and its M,
version which results from one iteration of the ORED algorithm, are mathematically
equivalent. Repeaed application of the ORED algorithm therefore ultimately results
inan M, equivalent to the original M. Inthe following M, consists of N emitting
states, augmented by an initial and a terminal null state. It is also assumed that all of

the states of M lie somewhere on a @nneded path joining the initial state and

termination states. That is, we assume that there ae no “dead” statesin M.

16 The use of single gtate indexes in the base mode is only to kego the formulation simpler. Another
attractive dternative would be to use cmposite indexes indicaing the applicable history of states
acoording to the order of the moddl.
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Definition: Any two models M, and M., ae defined as equivalent if
f(X; M) =f(X; |[M_,) for any arbitrary observation sequence X . In other words,
two models are only considered as equivalent if they yield the same likelihood,

regardless of the specific observation sequence

Theorem 1: Consider any sequence of states
Q(l)_ﬂ:{Qo:01Q11Q21"'1QL1QL+1:N+]} (2-6)

that may, with non-zero probability, follow each other in M ;. From this construct the

state sequence St for M,

Qs =0
S = %QQH’QZ) if it exists lepel +1 (2-7)

, otherwise

Then Q™ « S™ forms a one-to-one mapping of all valid state sequences in M to

all valid state sequencesin M., .

Proof: Consider two successive states in this ssquence namely

S . = E(Qg—pQg—l) if it exists oS = [(Qe—sz) if it exists
i o otherwise = X, otherwise’

Steps 1b) and 2) of the ORED agorithm alow for any of the four possible

combinationsof S, and S, . Since Q,_, lies ®mewhere on a wnneded path joining
the initial state and termination states of M, step 2) of the ORED algorithm

guarantees that S, lies smewhere on a mnneded peth joining the initial state and
termination states of M, . Therefore, S;*™ is a valid sequence of states for model

M ._,. Furthermore, from the given construction, Q;™ maps to a unique S;™ and
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vice versa. Therefore Q;™ « S;™ forms a one-to-one mapping of all valid state

sequencesin M, to all valid state sequencesin M ,. u

Theorem 2. The likelihood of an observation sequence X, and a specific state
sequence Q,in M, is equal to the likelihood of X and the swciated urique state

sequence S (defined in Theorem 1) in M, i.e.

f(X1, Qo™ IMg) = (X, &™ [Mgay).

Proof: Firstly, determine the likelihood using M. Let R, be the order of the
transition from state Q,_, to state Q,. Using the definition of conditional probability,

aswell asthe HMM asaumptions (AS.1 and AS.2, p. 21), yields

(X7, Q™ [Mg) =PQu [ X7,Q5, M) (X1, Qg [Mg)
= PQua Qg M) TOX, [XEQE M (X, QE [M)
=a. T 1QUMRTXE™.QE M)
(2-8)

The last fador on the right hand side of (2-8) is of the same form as the left-hand side.

Reaursive gplication of this expresson then yields:
(X0, Qo™ IMg) =y fOx [QuMe)ag (X, |QMe)ag, f(x |QuMg)ay,.  (2-9)

Let R, be the order of the transition from state S,_; to state S,. Following the

development of (2-9), the likelihood given M, can be shown to be:
(X1, & [Mg,y) = ay f(x,[S, Mgy 2 f(x; S, M R‘l)mastﬂ f(x, 1S, Mg1)a LIiRLH'(Z_lO)
It is now necessary to establish the relationship between (2-10) and (2-9). From (2-7),

and (2-10), the transition from state Q,, to state Q, (with probability a,

-Ry
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corresponds to the transition from state S,_; to state S, with probability a,, . From

step 23) R =1 impliesthat R =1 and a, =a, =a, - From step 2) R >1

impliesthat R =R -1 and a =a& (this is the order reduction step). In general
¥-Rg )

therefore

a, =a., (2-11)

Si-r R

From ORED step 4) it aso follows that

f(X, 1S, Mgy) =1(X, [Q,, Mg) (2-12)
Substitute (2-11) and (2-12) into (2-10) to obtain the required result

(X3, Q™" IMg) =f(X;, &§™ M) - u
Theorem 3: The likelihood of attributing an observation sequenceto M isequal to it
being attributed to M ,_, .

Proof: Theorem 2 states that f(X:, Q™ [My) =f(X;,S™ |M,), Where the two

state sequences correspond as is defined in Theorem 1. It is aso known from
Theorem 1 that for these two models there is a one-to-one mapping of such sequences.

Therefore

3K S M) = 3K QE M) 213
Ose o™

The respedive state sequences that are summed, are mutually exclusive and cover the
whole sample space of such sequences (they thus form a partition). Therefore both

sides of (2-13) reduceto marginal pdf.s giving the required result:

f(X; IMg) =f(X; [Mg) =
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This result shows that the two models result in identical likelihoods. One iteration of

the ORED algorithm resultsin anequivalent model with order reduced by one.

2.4 Examples using the ORED algorithm

We now illustrate the ORED agorithm by means of examples. The example in
Sedion 2.4.1 below is chosen to illustrate several aspects of the ORED algorithm,
amongst others the use of both single and composite states, as well as the use of tied
states leading to state merging. Higher-order Markov models in general are prone to
subtle difficulties, not so easily noticed when the model is represented in the
traditional way. The examples in Sedions 2.4.2 and 2.4.3 illustrate this point with
simple models containing some inconsistencies. If undeteded such inconsistencies

may hamper or even fatally flaw the HMM.

2.4.1 A simple mixed-order model

Figure 2-5 is a mixed-order HMM with a maximum order of three The result of
applying one iteration of the ORED algorithm (up to step 4) ) is shown in Figure 2-6,
while the final equivalent HMM 1 is in Figure 2-7. A detailed step-by-step exposition

isgiven in Appendix A.

Figure 2-5. A mixed-order HMM (maximum order 3).
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2)(2, (2,3):a'1223
a =a'
(2,2)(2.2) (23] 2a223 -a

12627 8 122 13)(3.3)

233

©oagraly=l 122378 123

a =a.,
(2,3)(3,47 4 234
. 3,4

Figure 2-6. Equivalent of Figure 2-5 with highest order two. Theintermediate
composite indexing schemeisretained for easier referenceto thealgorithm.

Figure 2-7. First-order equivalent of Figure 2-5.

There ae acouple of points that one can easily miss when interpreting this model
from Figure 2-5; apparently states 1 to 3 allow self-loops. In redity it is only true of
state 1. As is evident from the asciated pd. indexes in Figure 2-7, state 2 alows a
maximum of two repetitions. State 3 allows only one repetition and then only under
the precondition that the previous gate was state 2. Also, ignoring a,,, which is
obviously a unitary transition, it would appea from Figure 2-5 that there ae twelve

other (fre@ transition probabilities in the model. However, Figure 2-7 makes it clea



Chapter 2 High-order hidden Markov models 43

that threefurther probabilities are also unitary. Although all these fads could also be

gleaned by careful inspedion of Figure 2-5, they are quite gparent in Figure 2-7.

2.4.2 Inconsistent transition probabilities

It is well known from HMM1 theory that the probabilities of transitions leaving a
specific state should sum to unty. The same principle, of course, aso holds for
higher-order transition probabilities. In this case transition probabilities leaving a
specific history of states ould sum to unty. Recognising a violation of this principle
is, however, slightly more subtle with mixed-order versions, Figure 2-8 being a
(simple) case in point.

Implicit to the model isthat &, =0 (as it is omitted). To satisfy the requirement that
probabilities must sum to urity ag,, +a;,, =1 must hold. This implies that a,,, =1.
The first-order a, implies'” a (hidden) second-order a, , =a.,,. Therefore a;,, =1.
Similarly, a,, +a,, =1. From this follows then that &,, =0, thereby bresing the

only possible path to the termination state.

Figure 2-8. An inconsistent mixed-order model.

" When afirgt order transition probability is spedfied, its non-dependence on states ealier than the
current, simply means that dl its higher order extensons are ejual, thereby making their explicit
spedfication redundant.
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When trying to find afirst-order equivalent for this model, the inconsistencies beame
explicit. Exeaution of the ORED agorithm shows that states 1 and (1,1) in Figure 2-9
should be tied. That implies that the two sets of transition probabilities originating at
them should be cnstrained to be identical. The two states, however, do not have the
same number of transition probabilities making it impossble to do this. In addition, it
is easily seen from this figure that a,, =0, thereby bre&ing the link to the

termination state.

a( a

1yay -1
- 0 CoagTay sl V2R Ay ==l glfl ;\\a(l,l)(l,z):alllz"lz\‘
. , A > 12

L Y/

Figure 2-9. First-order equivalent (still using the intermediate indexing scheme).
States 1 and (1,1) should have been tied, but they have a different number of
transitions.

2.4.3 Non-supporting transition probabilities

Another subtle flaw, that can be specified into higher-order HMMs (fixed or mixed-
order), occurs when the sequence of states presumed by a higher-order transition
probability is not suppated by previously occurring transitions or vice versa. This
then results in sedions of the model that are not on a path which joins the initial and
termination states. Such dangling sedions will be removed by the pruning and, except
for the lossof some unusable parameters, are not necessarily a problem. If, however,
this sction was a link on the only path joining the initial and termination states, a

“broken” model would result.

As an example, the model of Figure 2-10 apparently has eight free transition
probabilities. Figure 2-11, however, shows that, due to “dangling’ state (2,2),

transition probabilities a,, =a,,, =0. This again, in its turn, implies that
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Ay, = &, =1, ultimately leaving four transition probabilities of which only two can

be varied independently. This will certainly affed the modelling cgpability of this

HMM.

Figure 2-11. First-order equivalent (still using the intermediate indexing
scheme). Note the dangling state (2,2).

2.5 Interesting higher-order HMM topologies

In Sedion 2.5.1 we illustrate the topology resulting from applying the ORED
algorithm to a fixed order HMM. Such a model incorporates duration and context
modelling. In Sedions 2.5.2 and 2.5.3 we demonstrate topologies arising from special

high order models which distinguish between these concepts.



Chapter 2 High-order hidden Markov models 46

2.5.1 Left to right HMM3 with one state skip

In this sedion the ORED algorithm is applied to the HMM 3 of Figure 2-12. Figure
2-13 shows the resulting HMM2 equivalent to this model. The cmposite state

indexes have been retained for illustrative purposes.

:0134
'1134
'1234
'2234
'1334

a 0123
g @ 1123
a'
a

1223
'
2223

(SRR VRE VI PR VR R <)

Figure 2-13. Equivalent HMM2*® for the HMM 3 in Figure 2-12, using the

intermediate mmposite state indexing scheme.

In Figure 2-14 the equivalent HMM 1 for this model is shown. As will be noted from

these diagrams, the resulting models have arich structure. The role that the context of

18 |f the first index is omitted in cases where @ has 3 and @' has 4 indexes, thereby leaving only
single probabili ties on each transition, thiswould also be the equivalent HMM 1 for Figure 2-2.
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previous gates plays in a given transition is explicit. Also note that the longest path
without self-loops in Figure 2-1 occupies threephysical time steps'®, six time steps for
the second-order model®® and nine time steps for the third-order model®*. The shortest
paths, of course, do not differ from the original first-order model. This makes for
more precise duration modelling and is an alternative to often used phoneme models
such as Ferguson models (Ferguson, 1980 and the models used in the Sphinx system

(Lee 1989 p. 55).

Figure 2-14. The HMM 1 equivalent tothe HMM in Figure 2-12. The states of the
original model in Figure 2-12 corre spond hereto the set of stateswith the same

pdf. (f.).

9 states 1, 2 and 3in Figure 2-1.
D gates (0,1), (1,1), (1,2), (2,2), (2,3) and (3,3) in Figure 2-13.
A dates1, 2, 3,5,6, 7,11, 13 and 14in Figure 2-14.
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2.5.2 Duration modelling with high-order HMMs

In the previous dion we saw that fixed-order HMMs model both context and
duration information. With the following example we want to illustrate atopology
arising from emphasising the duration modelling aspects of the model while
negleding the contextual modelling that is not diredly involved with the modelling of
the duration of a state. This type of modelling only involves dates with self-loops. In
such a state we nedd to identify the sets of departing transition probabilities that share
the same destination and involve the same number of repetitions of this gate. If all the
transition probabilities in such a set are constrained to be identical regardless of prior
states, the resulting model will be focussed towards modelling the duration of this

state. Thisis formalised in the following algorithm.

Algorithm for a duration emphasised HMM:

1) Start with afixed-order model of the gopropriate order and topology.

2) For eat state | with self-loops (i.e. has a a.'o'—l,-j =a . with D' the order of

o Tl

the transition): all transition probabilities all’D,,lji ~ sharing the same destination

sate i, , with the same number of repetitions of j preceding it, are constrained to

have an identical value.

3) States without self-loops: all transition probabilities leaving from such states are

reduced to first-order.

This algorithm results in a mixed-order model. Since all higher-order transition
probabilities are only used to model the number of self-transitions, we will term

D =max(D’) the duration ader. Transition probabilities not involved with duration

arerestricted to first-order. As an example of this tednique, Figure 2-15 applies these
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restrictions to the model of Figure 2-12. Reducing it to equivalent first-order via the
ORED algorithm results in Figure 2-16. In later work we will refer to the stadks of

states occurring in high-order duration models sich as Figure 2-16, as duration stacks.

a' '

N 3333 a'3504
0133 a. .. =

a.. = 0134
, ,11337 a. =
, A 1922 a & 1933~ a 113

a, 011 , a 2222 1223 a 2233 1234

7 &1y 2PN & 9223 aa 33N & 9234
2112 & 123 2333 81334

0 &g; 1 1117 2 1193 3 25334 4
N R\ N/ i

Figure 2-15. Durational left to right HMM 3 with one state skip. Note the shared
transitions which constrains Figure 2-12to focus on duration modelling.

' '
a 1111 a 2222

'
a 3333

!
N113 . a'
U]

Figure 2-16. First-order equivalent of the HMM in Figure 2-15. Notethe
similarity to Ferguson model shown in Figure 2-17.

Ead duration stadk functions as a type of super-state that enables duration modelling.
The individual members in such a stadk only differ from each other in the duration
information that they record via their associated transition probabilities. Transitions

entering a stack are dependent only on immediately preceding stacks and not on
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ealier stadks, hencethe context modelling is of first-order. Transitions internal to, or
departing from, a sad do not incorporate any information on the duration of prior
stacks. This is contrary to fixed-order models where both previous gates and their

duration affed the duration of later states.

As can be seen from Figure 2-17, this diagram has a striking resemblance to the well-
known models used by Ferguson (1980 to model state duration. Reversing the
diredion of this model while maintaining the original order of the pdf.s results in a
Ferguson model. Both model durations of up to three state repetitions explicitly
(without any self-loops). Longer state durations are (in both cases) modelled with an
exponentially decaying probability. This gives them the same caacity for modelling

duration.

Figure 2-17. Ferguson model of Figure 2-1 (with 2 timelags).
2.5.3 Context modelling with high-order HMMs
In certain applications, of which language recognition (Chapter 4) is an example, we

are more interested in a good specification of the sequence of distinct states that may

follow each other, and not so much in the duration of each state. This can be
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acomplished by constraining transition probabilities, only varying in the number of
repetitions of previous gates, to be identicd to ead other. In other words, suppose we

want to model only the effea of the C different previous dates on a given transition.
Let i* indicate one or more occurrences of i. Congtrain, via state tying, all transition

probabilities of the form & . .  to have the same value. This is an interesting

12°""'c'ctl

mixed-order topology. While the maximum order is infinity, a context-order C may
be identified. Due to the heavy sharing of parameters, this topology can still be
implemented in afinite structure. Figure 2-18 provides an example of this by applying
this technique to the structure of Figure 2-12. Due to the infinite HMM order, this
example is impossible to processdiredly with the ORED algorithm, as the model will
grow without bounds. However, doing the gpropriate merging on the pattern that

emerges (see kample in Appendix B), results in the structure of Figure 2-19.

Figure 2-18. Third contextual order left toright HMM with one state skip. The
notation k™ isused toindicate one or more occurre nces of index k. The (infinite)
family of transition probabilitiesindicated by each symbol ain thefigureareall

identical. Thisisa mixed-order model with a maximum order of infinity.

Notice how, regardlessof the number of repetitions of any specific state, the sequence
of the last threedistinct states is remembered. This is a very simple model, but fill

suffices to illustrate the “longer” state memory. For example, assume that state 3 of
the HMM in Figure 2-12 always produces at least three observations. When making a

transition to Sate 4, these threeobservations will fill the whole state history taken into
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acount by the third-order transition probabilities. Due to this, information about
whether the distinct state preceding state 3 was date 2 or gate 1, is not being taken
into acount any more. The repetitions of state 3 effectively push this information
beyond the horizon of visible prior states taken into aacount by the training algorithm
when estimating the transition probabilities. Therefore, when fixed-order models are
trained on data with such a repetitive nature??, the implicit context order of the models
(or sedions of it), will be deaeased to C < R The HMM of Figure 2-19, however,
does not suffer this problem, but guarantees to maintain its C. In Sedion 3.3.2 we will

provide an efficient algorithm for developing and training this topology.

o
e

301 = a1

o
833 =8 prgt3

Figure 2-19. First-order equivalent of the HMM in Figure 2-18.

Applying duation and context modelling in tandem results in powerful alternatives to
standard high-order HMM modelling. These topologies allow independent variation

of context and duration orders. This topic will be developed further in Sedion 3.3.3,

22 |n Sedion 4.3 p. 91 we will seethat the typical analysis applied to speed putsit in this category.
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following on the development of the FIT algorithm. In Sedion 4.7 we will illustrate

its application in the context of automatic language recognition.

2.6 Relationship of prior work to the ORED approach.

In this sedion we will not concern ourselves with Markov chains or N-gram models,
but will focus only on how prior higher-order HMMs formulations relate to the ORED
reduction. The ideaof using a twofold product of the original state spaceto simplify
the formulation frequently surfaces in the literature. This is a very intuitive notion that
spontaneously arises from the mathematical formulation of higher-order HMMs (see

Sedion 2.2.3.2). It also forms the basis of the ORED algorithm.

Using this twofold product of the original state space He (1988 derives a second-
order Viterbi algorithm and indicates that extending the Viterbi algorithm to even
higher orders follows along the same lines. This is very reminiscent of the ORED
approadh, the main difference being that, instead of increasing the order of the

algorithm, the ORED algorithm uses this principle to reducethe order of the model.

Kriouile, Mari and Haton (1990 extend the available techniques by deriving an
extended Baum-Welch re-estimation algorithm specific to secnd-order discrete
HMMs. Asin the first-order case, the forward and badkward equations play a entral

role. In this case the forward variable is a threedimensional structure a,(j,K),
instead of the two-dimensional a,(k) found in first-order algorithms. The Baum-

Welch algorithm is adapted acordingly. An alternative view is taken in the ORED
algorithm. Instead of increasing the dimension of the forward variable (and likewise
the badkward one), we consider (i,j) and (j,k) in equation (2-4) to be composite
indexes of single states. Although very similar to their view, this allows usto view the

seoond-order equations as first-order ones, resulting in the ORED algorithm and the
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resulting model structures asiillustrated in previous dions. This different viewpoint
has important implicaions: instead of increasing the order of a specific algorithm, the
ORED algorithm iteratively reduces the order of the model to being one. Then it can
be processed with any of the standard first-order algorithms. In an isolated digit
reagnition experiment, Kriouile et al. compare the use of first-order HMMs with
seoond-order versions and a third model termed as a “transition equivalent model”.
The transition structure of this model is identical to what we would obtain using the
ORED algorithm. Using this last model in multi-speaker experiments, they achieve an
acarracy of 97% whereas their second-order models had an acaracy of 99%. In
spedker-independent mode this transition equivalent model could not improve on the
91% of the first-order models, whereas the second-order model yielded 93%6. We
proved in Sedion 2.3.3 that this algorithm results in a model that is fully equivalent to
the original higher-order model. It is unclea why they achieve results inferior to those

of their second-order HMM 23,

A recent paper by Mari, Haton and Kriouile, (1997 aso reveals me interesting
correspondence with the ORED algorithm. The idea of using a twofold Cartesian
product of states once ajain surfaces. An example, reproduced in Figure 2-20, is

given of asimple HMM 2 and its first-order equivalent.

2 This may be attributed to different local optima due to different initiaisation. Alternatively it could
be that one of the other requirements for full equivalence, was not met.
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Figure 2-20. a) Second-order and b) equivalent first-order HMM s
(from Mari et al., 1997).

The first-order equivalent closely®* resembles the topology that the ORED algorithm
will generate. As far as we ould ascertain, this is the first reference to a fully
equivalent first order model in the pullished literature. It is likened to Ferguson
models (Ferguson, 1980, which are specifically designed to improve HMM duration
modelling. As shown in Sedion 2.5.2, a special mixed-order HMM results in
Ferguson models as its first order equivalents, whereas the fixed order model also
devotes ome of its cgpacity to modelling state context. If the designer of the HMM
topology is gecificdly interested in duration modelling, it will be more dficient to

apply this or other approacdes (Levinson, 1986 specifically designed for this purpose.

# Theinitial state (presumably a redundant null state) is missng from their equivalent.
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After illustrating the eguivalent first-order model, Mari et al. favour extending the
Viterbi and Baum-Welch algorithms to second-order rather than using first-order
equivalents. As reason for this they motivate that the latter dramatically increases the
number of states. While this remark is obviously true, further investigation reveds
that this increase in states need not be adisadvantage. From the preceading work on the
ORED algorithm, it should be clea that the number of free parameters is not
increased in the process Tied pdf.s only need to be evaluated once and the same
number of transition probabilities will have to be cnsidered in both cases. (As they
are working with a (fixed-order) HMM2, no tying of transitions will occur.)
Therefore, the use of the eguivalent first-order model will not have any negative

impad on the processing requirements.

As far as memory requirements are concerned, instead of working with the three

dimensional a,(j,k) structure of equetion (2-4), the equivalent HMM 1 uses a two-

dimensional structure of the same size One of the important findings of Mari et al.
adually deals precisely with this asped. For computational efficiency, they
implement special measures to avoid combinations of (i,j) or (j,k) that are not coupled
via atransition in the alculation of (2-4) or its backward version. This calls for the
use of sparse structures. This situation is not confined to high-order models. In our
implementation using first-order models, such sparse structures are dso ultili sed.
Therefore, their algorithm wil | have the same memory requirements as those resulting

from the ORED algorithm followed by standard first-order processing.

To summarise, previous work (He, 1988 Kriouile et al., 1990 Mari et al., 1997
focused on exending dgorithms for processing seand-order HMMs. Although the

authors indicae that extension to agorithms for HMMs of order higher than two will
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follow a similar pattern as the extension to second-order, no such algorithm is
presented. Their algorithms are based on the same principles as the ORED algorithm
and there is an awarenessof the possibility of reducing the order of HMMs. However,
no algorithms formalising this concept are given (studying the ORED algorithm wil |
reveal aspects that are not so intuitive as the notion on which the algorithm is based).
In contrast to extending a specific algorithm to a higher order, the objedive of our
ORED algorithm is to transform any higher-order (also mixed arder) HMM to an
equivalent first-order model. This permits the apgication of any (undtered)

algorithm apgicable to first-order HMMs, to HMMs of any other order.

2.7 Practical issues with higher-order HMMs

In Sedion 2.3.3 we prove that using the ORED algorithm to first reduce a model to an
HMM 1 before matching observations to it, is equivalent to matching diredly the data
to the higher-order HMMs. In Sedion 2.6 investigation of an algorithm extended to
HMM 2s naturally leads us to the structures dictated by the ORED algorithm. Taking
al thisinto acount, it isimportant to note the full equivalence between extending the
order of the algorithms, or aternatively, reducing the order of the model and then
processing it with a standard first-order agorithm. In the following, comments made
about diredly processing higher-order HMMs equally apply to processing its HMM 1
equivalents obtained via the ORED algorithm. With the exception of ease of use, the
two approadhes are identicd for all pradical purposes. With this in mind, we will in
the rest of this work refer to the combination of the ORED algorithm followed by

standard first-order processing as the extended/ ORED approad.

As senin Sedion 2.2.3.2, using high order HMMs can be vastly more expensive than

HMM 1s. The processing and memory requirements are serious issues that can easily
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place such a model outside the available computing capacity. Typically though, the
transition structure of a high-order HMM is quite sparse. In Chapter 3 we will
investigate a tedhnique to reduce computational requirements by exploiting this

sparseness

Another subtler problem also lurks in the large parameter spaces of high-order
HMMs. Due to this large number of free parameters, the surface over which it is
optimised duing training, might (will?) be quite cmplex. In Chapter 3 and 4 we

show that this can cause the training algorithm to converge often to inferior solutions.

The longer history of states ecified in a high-order HMMs also has svere
implications for the quantity of training data that should be available to optimise
properly the transition probabilities. The number of patential combinations grows
exponentially with the order of the model. At the same time, the number of those that
can be physically realised in a given training set adually deaeases with order. In
combination this easily results in serious data deficiencies. Although good training
algorithms can maximise the usefulness of a given database, in the end there is no

substitute for more data.

2.8 Summary and conclusions

This chapter details and proves the ORder rEDucing (ORED) algorithm, useful for the
processing of high order HMMs. In contrast to existing approaches, which extends
algorithms to higher orders, this algorithm compresses any higher-order HMM to
first-order, thereby allowing the use of al standard HMM algorithms on it. In
addition, the first-order representation makes models easier to interpret. Subtle
inconsistencies become explicit and easily recognisable. The availability of well-

optimised first-order algorithms is another benefit.
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Mixed-order HMMs might appea to be somewhat esoteric concepts. Using the
ORED algorithm, it is shown here that frequently used ad hoc topologies like
Ferguson models (Ferguson, 1980, are in reality equivalent first-order versions of
mixed-order HMMs specifically designed to enhance duration modelling. Another
extension, designed to enhance ®ntextual modelling, is also proposed. The
requirements for training high order HMMs reveal serious, sometimes prohibitive,
computational demands. Reducing this, while & the same time maintaining or

enhancing the quality of the resulting model, is the subjed of the next chapter.
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Chapter 3 Training high-order HMMs

3.1 Introduction

As noted in the previous chapter, HMM training algorithms can be extended to higher
orders. Alternatively, the use of our new ORED algorithm enables high order models
to be transformed to equivalent first-order versions. These models can then be trained
by using standard first-order HMM optimisation algorithms. This in effect extends the
algorithms used for training first-order HMMs to HMMs of arbitrary order and is fully
equivalent to using specially extended algorithms. In the following, both the ORED
approach and extending existing algorithms to higher orders (He, 1988 Kriouile et

al., 1990 Mari et al., 1997 will colledively be referred to as the exended/ ORED

approach.

Unfortunately, due to the large number of parameters involved in such models,
training HMMs via the extended/ ORED approach can be avery (even prohibitively)
computationally expensive task. We aldressthis by introducing the Fast Incremental
Training (FIT) agorithm for fixed-order HMMs in Sedion 3.2. This algorithm
incrementally “grows’ a high-order HMM by using lower order HMMs to prune
redundant transition probabilities before the next higher order is attempted. As will be
seen in following chapters, this can lead to large savings in computational
requirements. Section 3.3 investigates issues and tedhniques for applying FIT to

mixed-order models.

The FIT algorithm is not equivalent to the extended/ORED approach. The reason for
this is that the optimisation process (EM agorithm, see Moon, 199%) can, due to

initial conditions, converge to dfferent local optima, thereby resulting in different
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solutions. Using caefully controlled simulation experiments, the quality of
extended/ORED and FIT trained models are investigated in Sedion 3.5. The results
show that the FIT algorithm can reduce omputational requirements substantially,
yielding a the same time models that are more acarate, more compad, and

generalise better than models trained by using the extended/ORED approadh.

3.2 Incremental training of fixed-order HMMs

3.2.1 Basis for Fast Incremental Training

Experience shows that in many pradical situations involving non-trivial models, a
large percentage of transitions disappeas during training. For many problems,
considerable training effort is therefore expended on estimating parameters that will
eventually become zeo. Referring badk to the examples of Sedion 2.4, it will be
realised that a single transition probabil ity in the R ~1t-order model, is simply being
replacal by a set of probabilities in the Rth-order model. It will result in significant
savings if the training of redundant sets of Rth-order probabilities can be avoided by

noting which corresponding R— 1th-order probabilities are zeo.

We now investigate the target transition probabilities of a first-order model (such as
M, in Figure 2-1) when it is trained with data that have been generated by the
corresponding second-order model (such as M, in Figure 2-2). Training algorithms,
such as Baum-Welch re-estimation, estimate transition probabilities by counting the
expected number of transitions on ead of the links leaving from a state (Poritz,
1988. Consider atransitionin M, fromstate Q,_, = j to Q, =k occurring with non-
zero probability. If M, was used in the placeof M, , this sme transition would be

observed with a potentiall y different, but sill non-zero probability. This siggests that
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a first-order model can be trained to determine which sets of second-order transition
probabilities are viable. Redundant second-order probabilities can then be avoided
during subsequent training.

Consider the first-order probability in model M, of state Q=j, j>0 being
followed by state Q =k (without any consideration of ealier states). Transitions
originating at the initial state are excluded sincethey are inherently of first-order. Let

A, represent the set of states that have adired transition leading to state Q= j .

Using the definition of total probability, conditional probability and the Bayes rule

yield:

PQ =KIQs = [ M) = 5 Q=K Qe ZiIQs = [ My), 1>0,0>1

; P(Q, =klQ-, = ],Q-, =1, M,) P(Q,_, =i|Q, = ], M,)

P(Q,-; =i|M,)
P(Q = jIM,)

; Ak P(Q. = ]lQ- =i, M,)
(3-1)
Due to the P@Q,,=i|M,)/PQ,,=j|M,) fador, the required probability is a
function of time. This suggeststhat the closest approximation to a second-order HMM
using a first-order HMM of similar structure would make use of restricted time-
varying transition probabilities. To make this time-dependence explicit, (3-1) can be
rewritten as.
P(Q._, =i[M,)
PQ..=]IM,)

= ; aw, (F-1) with w (¢-1)=a (¢/-1)

ajk(f):-;ai’jkaij ()] j>0,/>1

P(Q,, =i [M,) _
PQ,=jIM),)

(3-2)
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If we asssume that Q =i isreadable from the initial state (no dead sates), it implies

that ij (/-1 >0. From (3-2) it follows that iElay’jk 20 O g[lajk (/)#0 and aso
Oaj =0 O gajk (£)=0. In other words, if at least one of a set of second-order

transition probabilities is non-zero, then the time-varying first-order approximation
will be non-zero somewhere in time. Viceversa if all of the second-order transition

probabilities are zeo, itsfirst-order approximation will also be.
First-order HMMs do not acount for the time varying nature of (3-2), but will
approximate it with a single constant, let's sy a; =g(a; (¢)) where g() represents

the unknown approximation. If ;lajk(ﬁ)io, any reasonable gproximation

ay =9(@ (£)) will result in a, # 0. Therefore, for any reasonable g() it follows that

Oay #0 O a, #0. Thisleads us to conclude that if any in a set of second-order

transition probabilities are greaer than zero, any reasonable (constant) first-order
approximation of it will also be greaer than zero. Non-zero high-order transition
probabilities are therefore not lost during the estimation of their first-order

approximations.
Also if Oay =0, the only reasonable gproximation is a; = g(a, (¢) =0)=0. This

iswhat makes it possible to detect sets of redundant high-order transition probabil ities
by noting which lower-order ones are zeo. In pradical situations where the allowable
combinations of caegories (such as phonemes) are sparse, avoiding the training of
exponentially growing numbers of redundant transition probabilities, can (and does)

lead to considerable savings.

Note that training algorithms sich as the Baum-Welch algorithm, while guaranteeing

an improvement on ead training iteration, can converge to any of a number of local
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optima (Poritz, 1988. This makes it impossible to determine exadly to what constant

the first-order training algorithm will converge to. The gproximation g() might be

very complex and dependent on many factors.

3.2.2 The FIT algorithm for the training of fixed-order HMMs

1)

2)

3)

4)

Set up afirst-order HMM for the gplication at hand.

Run the training algorithm on the first-order model. Non-viable transitions should
disappea.

Convert the optimised first-order model to a second-order model. Let A; be the
set of states that diredly precedes date S= j. Replace the probability a; that
joinsthe states S=j and S=k by the multiple probabilities a;, where i OA, **.
Initialise these probabilities with the first-order values, a, =a,, i0A,. This

conversion will increase the number of transition parameters. If any transitions
disappeaed while training the first-order model, they will not propagate to the
second-order model, thus avoiding the training of this larger number of second-
order transition probabilities. To benefit from this a sparse transition matrix

representation must be used.

Use the ORED algorithm to crede a first-order equivalent of this model. Initially
this model will match an unknown observation string with the same likelihood as

the original (trained) first-order model.

% |f the Medy form HMM was used, a separate pdf. wil | be associated with each transition probabilit y.
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5) Now, by repeaing the algorithm from step 2, train this model. This will refine the

transition probabilities to their required higher-order values. As was previously

mentioned, an Rth-order model simply extends the memory of an R-1th-order
model by one time step. Therefore this process can be repeded to train even
higher-order models, beaing in mind that deficiencies might arise from

inadequate quantities of training data.

3.3 Mixed-order variants of the FIT algorithm

It will be extremely helpful if we can develop aversion of the FIT algorithm that can
incrementally train general mixed-order HMMs. Such and algorithm will, at eadh
stage of the FIT agorithm, ascertain which of the transition probabilities should be
extended to the next higher order, and which must be retained at its current order. The
model can then expand only those sedions where dependence on ealier states is of
importance Sedions alrealy operating on their proper Markov order can be retained
in their present form. Due to the more mwmpad use of transition probabilities, the
models will train faster and the probabil ities will be more reliable. While this seems to
be avery useful idea for reducing computational and caher difficulties, it contains
some formidable obstacles. The problem lies in how to dedade which probabilities to

extend.

When a mixed-order system is implemented as a fixed-order system, with the same
highest order as the mixed-order system, each of the lower order transition
probabilities will be implemented as a set of identical higher-order transition
probabilities. If all the higher-order probabilities are hierarchically divided into sets
acording to the lower order probabilities from which they originate, these sets can be

seached to find which have closely related values. Such sets then indicae the
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possible presence of implicitly lower order transition probabilities in a mixed-order
system. As also discussed in Sedion 2.3.1, if these transitions share the same
destinations, the states from which they originate can be merged into a single state.
Otherwise, these states dould at least be tied to ead other to provide greaer

robustnessthrough parameter tying.

At first glance one might attempt to extend the FIT agorithm to mixed-orders by
including such a merging and tying procedure dter ead training cycle. Unfortunately

this approach will fail. To seethis, consider afirst-order transition probability a; that
is extended during the first cycleto the set &, , i0A,. If not merged, eat of these
will be expanded in the next cycle to a,; , hOA. The problem now is that,
although all of the probabilities in the set &, , 0 A, may be identical, this may not
necessarily be so for the sets a,;, , hOA . The only way to determine this would be
to insped the sets a,, , hOA. This unfortunately means that we canot merge

lower order transition probabilities on a per cycle basis, but will have to wait until all
cycles of the standard FIT algorithm have been completed. At that late stage dl the
computation of the standard FIT algorithm has already been expended. Merging and
tying at this gage, coupled with some retraining can, however, make the final model
more compact. Due to the &ove-mentioned difficulties, this approadh hes not been

explored further.

There is a viable gproac to training mixed-order HMMs via the FIT algorithm. If
the mixed-order model is not of general structure, but is rather constrained to a very
specific mixed-order topology, the prior information on this topology can be used
when deciding how transitions should be extended. This then results in special cases

for steps 3) and 4) of the FIT algorithm (page 48). As should be clea from the ORED
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algorithm itself, mixed-order models lead to tied transitions and the requirement to
merge cetain states. The merging of states add extra complexity. However, steps 3)
and 4) of the FIT algorithm can be combined into one smplified step. Basically it
involves observing the effed of applying these two steps in a given situation. Then
these steps can be replaced by diredly modifying the model acwrdingly. In the

following this notion will be goplied to the topologies of Sedions 2.5.2 and 2.5.3.

3.3.1 Duration modelling with the FIT algorithm

Reall from Sedion 2.5.2 that a higher-order HMM can specifically focus on duration
modelling by modifying the transitions on states with self-loops. In particular, all

transition probabilities &..,;  sharing the same destination state I, » With the same
number of repetitions of j preceding it, are constrained to have an identical value. This
can be acomplished by modifying step 3) of the FIT algorithm to read:

3) If state S=j has a transition @) (self-loop) leaving from it, let Ay be the set of

states diredly precaling it. If it does not have aself-loop, A, isempty.

Now replace the probability a; that joins the states S=j and S=k by the
multiple probabilities a; where i JA,. Probabilities a, , i#] are tied
(identical). All are initialised with the @rresponding first-order value, that is
8, =a;., I0A . Thesetied probabilities will lea to tied states, which may be
merged by the ORED algorithm subsequently used in step 4).
As suggested above, steps 3) and 4) can be merged into one simplified step that
direaly modifies the model in question. As illustrated in Figure 3-1 and Figure 3-2,

the ORED agorithm in this situation adds an extra sate for ead existing state with a

self-loop. The original self-loop is redireded to this new state. The values and
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destinations of all the other transition probabilities of this original state are dugicaed

at the new state.

a

111

a233

133

a'

Figure 3-2. First-order version of Figure 3-1.

Repeaed applicaion of the duration modelling version of the FIT algorithm will

result in stadks of associated states, termed duration stacks in Sedion 2.5.2, p. 48.

3.3.2 Context emphasised mixed-order HMMs

From Sedion 2.5.3, a higher-order HMM can spedficdly focus on the combination of
differing states by ignoring the number of self-transitions. In particular, al transition

probabilities of the form & . .  are constrained to have the same value via state

12 """'clct

tying. Asindicated in Sedion 2.5.3 and Appendix B, the infinite order that arises from
the abitrary number of repetitions, causes ORED to grow without bounds. Only after

inspeding and extrapolating the resulting structure can the neaessary merging be
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implemented. This is, of course, not amenable to automatic processing. Steps 3) and
4) of the FIT agorithm can, however, be simplified into a combined step that takes all

the intermediate processing into acount:

From the first-order model, identify and record the self-transitions on states, that is,

find each state Q = j that has a transition a; . Then remove all these self-transitions

from the model. Increase the order of this model (that has no self-loops) acwrding to
steps 3) and 4) of the standard FIT algorithm, but do not renumber immediately the

composite state indexes of the resultant model. For all states Q = j for which self-
loop a; existsinthe original model, identify the set of states S=j and/or S=(i, j).
All these states get an additional self-loop with value a; . After this the renumbering

of state indexes to single values can procee, thereby completing the replacement step

for steps 3) and 4).

3.3.3 Combinations of context and duration models

A context model (Sedions 2.5.3 and 3.3.2) with context order C ensures that the
effed of C distinct prior gates is taken into acount when making a transition. The
duration modelling is, however, restricted to a simple self-loop, suffering from the
same problems as first-order HMMs. Expanding this model further by using the
duration modelling of Sedions 2.5.2 and 3.3.1 (resulting in a CD model), re-endows it
with duration modelling without detriment to its context-modelling abilities. As
discussed ealier, this duration modelling does not take the duration of prior duration
stacks into acount. This is the price paid for guaranteang a fixed context and
duration order. In Sedion 4.7 we illustrate the use of such models by applying it to a

language recognition task.
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Interchanging the order of the techniques to produce a DC model, the cntext
modelling will enlarge the dependence on prior stacks. This will also include
dependence on states from these prior duration stads, thereby also re-introducing
dependence on their duration. Unfortunately this dependence also once again re-
introduces a horizon®® over which, during training, the full C distinct prior states may
not be visible any more. By not recognising the duration modelling pupose of the
states in the duration model, the DC combination could, therefore, once aain lose

some of its context modelling cgpabilities during training.

Many other combinations are possible. We will however content ourselves with those

discussed above, leaving further investigation to other sudies.

3.4 Example of training via the extended/ORED and FIT

algorithms

This sdion illustrates’’ the @ove by recovering a high-order HMM from simulated
data. This is done by using both the extended/ORED algorithm as well the FIT
algorithm. The model of Figure 3-3 was used to generate simulated data. This model
was determined by removing some of the transition probabilities from the model of
Figure 2-12. These removals were dosen to show specific effects at different levels

(iterations) of the FIT agorithm.

26 Similar to the situation sketched in Sedion 2.5.3.
27 Sedion 3.5 presents a forma comparison of the @nvergence of the FIT and extended/ORED
approaches. The current sedion only servesto enhance understanding o the algorithms.
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Figure 3-3. Model used for generating smulated data.
Firstly, all transitions involving a transition of state S = 3 to itself were removed (a,,
in Figure 2-1). This is a first-order effed that eliminates four probabilities in the
second-order model and ultimately eliminates nine probabilities in the third-order
model (all a' in Figure 2-2 and Figure 2-12 with two or more 3's in the subscript).
Next all transitions from state S=1 to itself, given that the previous date was also
S=1, have also been removed (a;,, in Figure 2-2). This is a secnd-order effed that
ultimately eliminates four probabilities in the third-order model (all a' in Figure 2-12
with threeor more 1's in the subscript). Finally, a third-order transition probability,
namely ag,,, has also been removed. The remaining probabilities were fixed at
arbitrarily chosen values. Two-dimensional data ae assumed. The three diagonal
Gaussian pdf.s of the emitting states were centred on the points (0,0), (0,1) and (1,1).
In two sub-experiments the standard deviations used in the pdf.s, were varied. In the
first, the sandard deviation g = 0.2, resulting in little overlap between the pdf.s. The
other experiment used a wider standard deviation, namely o =0.33, giving
considerable overlap. For eat of these sub-experiments 1000 different strings®® of
simulated fedure vedors were drawn. The extended/ORED approach was based on

the structure of Figure 2-14 as initial configuration, whereas the incremental approac

2 As gpedfied by the model (seeFigure 3-3), the number of vedors in each string will vary randomly.
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was initially based on Figure 2-1. The initial transition probabilities for the self-loops
were fixed at 0.8 and the remainder was equally divided between the other transitions.

Initial values for the pdf.s were determined from vector quantisation (Gray, 1984).

Figure 3-4 shows the model topologies as they evolved from stage to sage in the
incremental training process Both sets of standard deviations yielded identical model
structures. Compare this figure to those of Figure 2-12, Figure 2-13 and Figure 2-14.
The trangitions that disappear during each stage of the incremental training
correspond exactly to the model used to generate the data with. Due to the presence

of local optima, thiswill not necessarily be so in all cases.

Figure 3-4. Model structures after a) first, b) second and c) third-order stages of
the FIT algorithm.

Two dfferent quantities were alculated with which to judge the finer differences
between the models. The transitions and mean values in the models are roughly of
comparable magnitude. The first quantity used measures the average difference
between these trained parameters and their acdual underlying values. Using the narrow
pdf.s (o =0.2) both the extended/ORED and FIT approadies converged to the
corred structure with identical parameters. As can be seen from Table 3-1, the trained
parameters closely matched the true underlying values. With the wider pdf.s

(0 =0.33), the extended/ORED approach converged to a sub-optimal structure,
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clealy refleded in the rather large deviation from the true values. The incremental

approach again yielded the @rrect structure.

From the final likelihoods of Table 3-2 the same pattern emerges. The example shows
that the local optima to which both approades converge, may or may not coincide. It
is interesting to note how, in the incremental approad, the likelihood improves
rapidly with increasing order until the proper order is reated. Thereafter only a
marginal improvement, which can be dtributed to specialisation on the training ceta,
takes place. It was also previously observed that the extended/ORED training
approadh in the sub-experiment with the wider pdf.s yielded a large deviation between
the resulting and adual parameters. In spite of this, the total likelihood achieved is
reasonable and compares with the second-order approximation of the incremental

approach. Thisisthetypical behaviour of convergence towards alocal optimum.

Table 3-1. Mean deviation between trained and actual parameters.

Pdf st dev o ‘ Extended/ORED training  Incremental (FIT) training
0.20 0.015 0.015

0.33 0.307 0.017

Table 3-2. Total likelihood log[f(X;|M)] after training.

St. dev. | Extended/ Incremental (FIT) training order
ORED 1 2 3 4 5

O.
0.20 -50374 -85328 -64917 -50374 -50146 -50135
0.33 -570366 | -594401 -570087 -561179 -560952 -560925

3.5 Simulations to examine the convergence of
extended/ORED and FIT based training
As en in Sedion 3.4, this algorithm will not necessarily converge to the same values

as the extended/ORED approach. Underlying training algorithms, such as the Baum-

Welch algorithm, only guarantees converging to a local optimum (Poritz, 1988. The
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FIT algorithm starts out with a different number of differently valued initial
parameters from those of the extended/ORED approach. It may, therefore, converge
to a different local optimum from that of the extended/ORED approach. A valid
guestion is whether one technique will yield more acarrate results than the other. The
incremental approach with its much smaller initial set of parameters initially denies
the model the full flexibility that the extended/ORED approad can benefit from. This
may lead to the ultimate selection of a less beneficial solution. On the other hand, with
the smaller sets of well-chosen initial parameters that the incremental approac
provides, the spaceover which it is optimising will probably be less convoluted. It is
possible that the focus in training, creded in this way, will contribute towards
deaeasing the effects of local optima in the parameter space To investigate the
quality of the FIT solution, carefully controlled experiments are needed. In particular,
it is desirable to use data obtained from a hidden Markov source with known order
and transition probabilities. Clearly, this is not possible with speech data, so synthetic
data was used. This allows precise @ntrol over the Markov order, access to the
underlying transition probabilities and control of the difficulty of the problem. For
eah synthetic experiment, two HMMs of a given order and complexity were
generated. The extended/ORED and FIT algorithms were tasked with inferring the
parameters of these models, using data that was generated by them. Test data
generated by the two models is then classfied according to which model generated it.
Access to the underlying HMMs allows testing against the adua generating model
(not the FIT or extended/ORED estimated model), and therefore dlows an estimate of
the optimal classification performance ahievable. This is useful as it can identify

specialisation problems and determine expeded performance bounds.
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3.5.1 Generating simulated data

A hidden Markov model consists of a ammponent that measures the similarity between
fedure vedors and states. A transition structure then models how these states may

combine to form the whole pattern under consideration.

In the aurrent situation, we will model the local similarities by a set of two-
dimensional Gaussian densities with an isotropic variance The number of these
densities will be specified in each experiment. Their centroids are randomly placel on
a sguare two-dimensional plane. Eadh centroid is constrained to be within a cetain
specified range of standard deviations from its closest neighbour. Figure 3-5
illustrates a typical set of density centroids obtained in this way. In the following
experiments the number of densities, as well as the separation between them, will be
varied. The transition structure was manipulated by starting with a randomly
initialised ergodic model structure of a specified Markov order. The number of states
in this ergodic structure was determined from the specified number of densities in the
model. Two extra states were alded to suppy the model with an initial and
terminating state. Transition probabilities were chosen randomly, with biases
favouring self-loops and reducing the probability of termination?®. This was done to
ensure that very short feaure vedor sequences would not be dominant (the actual

length will be random). These transitions are then pruned to obtain a @ntrollably

29 Where L is the number of links leaving from a state, random variables X, , 1<i <L were drawn
from an uniform distribution on the range [0,1]. The link leading to the termination state was reduced
to X;/10, while the one corresponding to a self-transition was enhanced to 4X, (L —1). After
pruning, the remaining probabiliti es were normalised to a unity sum.
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gparse transition structure. If no path exists between the initial and termination state,

the model is discarded and the whole processis repeded.

Feature 2

Feature 1

Figure 3-5. An example of a set of Gaussan pdf. centroidsfrom HMM s used to
smulate data. The drclesarethe one standard deviation contour on the pdf.s.

The key parameters regarding the transition structure of the model are the order of the
model, the number of states, the final number of transition probabilities and the
gparsenessof the transition structure. The last two are related but are dso random and
somewhat difficult to control since asingle deactivated transition could pdentially
disable large sedions of the model. The aility to transform any higher-order HMM to
an equivalent first-order model by means of the ORED algorithm meant that the data

could be generated using a first-order HMM.

3.5.2 Comparing FIT vs. extended/ORED trained models

3.5.2.1 Methodology

In this sedion we mmpare the classificaion acaracy and the number of transition

probabilities present in models trained viathe extended/ORED and FIT algorithms. In
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the clasgfication experiment, the object isto determine from which of two (synthetic)
HMMs the sequence is most likely to have @mme. This is a two-class classification
problem. We mmpare extended/ORED and FIT trained results with a HMM1 as well
as with the ad¢ua underlying HMMs used to generate the synthetic data. From this,

conclusions can be drawn about the relative merits of the various techniques.

A single mmparison experiment consists of generating two comparable HMMs as
described in Sedion 3.5.1. The number of transition probabilities in each is recorded.
These two models are then used to eat generate 1000 (training) feature vedor
sequences. Eadh set of 1000 sequences is vedor quantised into the number of
Gaussian clusters pertinent to the model. The initial ergodic models required by the
extended/ORED, FIT and HMM1 training algorithms are @nfigured from this. The
sets of training data ae then used to train the models using the respedive algorithms.
The numbers of transition probabilities present in the trained models are noted. The
1000 training sequences are then clasdfied (as to which model generated the
sequence) using the 4 dfferent sets of models, i.e. firstly with the true underlying
HMMs, then with those trained via the extended/ORED algorithm, then with those
resulting from the FIT algorithm and lastly with the HMM1s. From all of this the
various reqognition acairacies are noted. The known underlying models are then used
each to generate another 1000 independent (testing) feaure vedor sequences. These
testing sets are used to verify the clasdgfication results on data not used during the

training phases.

The &ove procedure is repeded twenty times, resulting in 20000 trials per
experiment on a given HMM configuration (different orders and pd. centroid
placements). A total of 1.28 million trials were undertaken for these experiments. The

first three eperiments generate data using eight state (ten counting the initial and
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termination states) HMMs of order two, three and four. The Gaussian centroids were
spaceal to be between 1.5 and 2 standard deviations from its closest neighbour. To put
this into perspedive, note that a roughy 2 standard deviations gacing between the
centroids, the envelope of the densities merges into a single pe&k. The last experiment
(experiment 4) uses a sewnd-order HMM with thirty-two states and more severe
pruning. This results in a sewmnd-order model with the transition sparseness
comparable to that of the previously used fourth-order model. We also placal the
Gaussian pdf.s more densely by restricting the eentroids of closest neighbours to be
between 1 and 2 standard deviations from each other. Table 3-3 summarises the four
conditions evaluated in this experiment.

Table 3-3. Thefour different generating HMM experiments evaluated.
“& Spacing” isthe distancebetween the Gaussan centroids.

Experiment | 1 2 3 4
Order 2 3 4 2
States 8 8 8 32

0 Spacing 15-3 15-3 15-3 12
Max links 656 5264 42128 34880
Avelinks 134 398 1232 974
Sparseness | 204% 7.6% 2.9%  2.8%

3.5.2.2 Model sizes

We first consider the compadness, i.e. the sparseness of models derived via the
extended/ORED and FIT algorithms as this indicaes the computational complexity of
the training procedure. In Figure 3-6 the excess number of non-zero transition
probabilities (expressed as a percentage relative to the actual number of non-zero
transition probabilities), resulting from these algorithms when compared to the true
underlying model, is shown. The sizes of the 8 state models, which have fairly well

separated Gaussian centroids, are well approximated by the FIT algorithm,
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irrespedive of the sparseness fador. This, however, does not hod for the

extended/ORED approach, which rapidly escalates in size

2000% 1 - < - - -

1820%

1600% -

1200% - -
0 B ext/ORED

i BFIT

800% -

% Excess transitions

400% + - -

0% -

(2,8) (3,8) (4,8) (2,32)
Order & States

Figure 3-6. Excesstrangtionsin extended/ORED and FIT trained HMMs
relative to those of thetrue underlying model. The HMM s are identified by
tuples such as (3,8), indicating a third-order HMM with eight states.

Remember that as far as using the extended/ ORED approad is concerned, we ae
merely training a very large and complex first-order HMM, which happens to be
mathematically equivalent to the R™order HMM. The behaviour of the
extended/ORED approach is therefore not surprising as it is common for pattern
reagnition systems to converge to bad local optima when confronted with a number
of training pearameters that far exceals those of the adual underlying model. This is
termed “specialisation” (Raudys & Jain, 1991). The FIT approadc, which does not
immediately consider all the available parameters while training, but “grows’ them as
nealed, is able to avoid this problem for experiments 1, 2, and 3 In the 4"
experiment, the spacing between Gaussan centroids is lessthan 2 standard deviations,
so none of the individual density functions are recognisable in the envelope density
(i.e. they do not form distinct pegs) which makes it hard to estimate the original

model from this data. While the model determined viathe FIT algorithm is four times
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the size of the ad¢ual model, it is substantially (72%) smaller than the result obtained

by using the extended/ORED algorithm.

In the following sedions we ®nsider the dasdficaion acaracy of the various
models. Results on training cita ae considered separately from those adieved on
independent testing data, since the ontrasts between them demonstrates the

generalisation abil ity of the respedive techniques.

3.5.2.3 Accuracy on training data sets

Figure 3-7 summarises the clasgfication acairacies achieved on the training data
This graph shows the relative increase in nrumber of errors compared to that obtained
from the known (ideal) underlying models, i.e. if the underlying model has 100 errors
and extended/ORED model 150, this is indicated as 50% excess When interpreting
these numbers one should remember that it is a relative measure, the ésolute eror

rates for all the simulation experiments reported here ae dl well below 10%.
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0% - 4
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Order & States

Figure 3-7. Relative eror increase when classifying training data with
extended/ORED, FIT and first-order trained HMMs, compared to that of the
true underlying model.

Note that the first-order HMM produces (unsurprisingly) poor performance on data

originating from higher-order models, thus illustrating the importance of using higher-
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order HMMs where gpropriate. An important weakness of the extended/ORED
algorithm, namely training daa spedalisation, is clealy highlighted in these tests. As
the underlying HMM transition matrices become sparser, extended/ORED’s
performance on training data improves until, for the (2,32) case, its error rate is 7%
lower than that of the true underlying model. This gedalisation (over training) results

from excessive free parameters.

To determine whether the differences in acarracy of the various training algorithms
are statistically significant, we use the McNemar test (Gillick & Cox, 1989. This
sensitive test is appropriate for comparing classfiers evaluated on common test data
Of the 24 pair wise mmbinations® present, only 3 pairs were found that were not
statistically significantly different with 95% confidence (see Appendix C.2.2). In spite
of the large number of repetitions, the acarracy of the extended/ ORED models for the
(3,8), (4,8) and (2,32) HMMs could not be differentiated from the underlying models.
It is interesting to note that the simplest and least sparse HMM, namely (2,8), is
absent from this list. We believe that the extended/ORED algorithm could not
specialise to the same extent on the training data in this case, as the number of

redundant parameters (transition probabilities) is too small.

3.5.2.4 Accuracy on testing data sets

Figure 3-8 shows the results obtained by classfying independent testing data

generated by the same underlying models. On the least sparse (2,8) model, the

%0 The generating, extended/ORED trained, FIT trained and HMM 1 models can be arranged in six pair-
wise combinations. Thisis done for four generating conditions.
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extended/ORED performance mmpares well with the FIT algorithm. This model has
relatively few free parameters and will not specialise easily. FIT performs
substantially better than extended/ORED for the remaining models as the underlying
transition probability matrices are more sparse. This occurs because of the
extended/ORED algorithm’s inability to prune unneeded transitions as efficiently as
FIT is able to, resulting in models with very high degrees of freedom, which causes
specialisation and hence poor test data performance These results clealy indicae that
the extended/ORED algorithm has a serious propensity to specialise on the training
data, a deficiency that does not affed the FIT algorithm to the same extent. Of
significant importanceis that for the more difficult (4,8) and (2,32) HMMs, the results
from the higher-order extended/ORED models are very similar to those obtained by
using the first-order HMM! Clealy the extended/ORED approach does not exhibit a
clea performance alvantage over first-order approaches, considering the

computational simplicity of the latter.
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Figure 3-8. Relative ermor increase when classifying independent testing data with
extended/ORED, FIT and first-order trained HMMs, compared to that of the
true underlying model.

Again, we employ the McNemar test with a 95% confidence level to establish which

training algorithms yield statistically significant different test data performances. We
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find that all but the extended/ORED vs. FIT results on the data from the (2,8) model,
and the extended/ORED vs. HMM1 results on data from the (2,32) model, differ
significantly (see Appendix C.2.3). Both exceptions correspond to observations we

have previously made in this edion.

If, due to the effed of local optima and specialisation, expensive higher-order HMMs
yield results comparable to first-order HMMs, then it is hardly surprising that this
tedhnology has found so little penetration in current pattern recognition systems. By
not trying to optimise the whole parameter space simultaneously, the FIT agorithm
provides an alternative that produces far better results with substantially reduced

computational requirements during both the training and testing pheses.

3.6 Summary and conclusions

The ORED algorithm followed by standard first-order training, and by implicaion
any direct higher-order extensions of the re-estimation equations normally used for
training first-order HMMs, has been compared to the new Fast Incremental Training
algorithm that we have developed. By means of simulations we found that the former
isinclined to spedalise on the training data. This results in bulky models that do not
generalise well on data unseen during training. We find that in some caes, the
extended/ORED approach leals to results comparable to those of a simple and
inexpensive first-order HMM. The HT agorithm, like most optimising pettern
reagnition algorithms, can also suffer from specialisation. In the experiments
conducted here, it does, however, seem less prone to this weeness. Lastly, we want
to point out that, while the FIT algorithm is computationally efficient, the problem of
inadequate amounts of training dita ill remains and can be aldressed using

interpolation or related techniques (Bahl et al. 1983.
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Chapter 4 High-order HMMs applied to Automatic

Language Recognition

4.1 Introduction

In previous chapters we developed theory for high-order hidden Markov modelling. In
this chapter we demonstrate its pradical applicability. Phonotactic modelling in
automatic language recgnition (ALR) systems is a large and complex model of the
interdependence of the phonemes of each language (Yan & Barnard, 1995. Because
of the size and complexity of these models, we have chosen this as a suitable field to
demonstrate our techniques with. It must be stressed at the outset that the intention is
not to develop a fully-fledged ALR system; this is a formidable exercise in its own
right. Instead the intention is merely to demondtrate that the concepts discussed in
previous chapters are indead appicable to practical systems. At the same time,
behaviours found in simulation experiments can be verified on a non-trivial real-life
problem. While the intention of this chapter regarding ALR appeas modest, the
application of our methodology to this problem and to the development of more

advanced systems, is very promising.

Language identification presents a formidable problem for implementation in
automatic systems, mainly because of the difficulty in quantifying perameters that
provide discrimination. The problem is exacebated further by the various urces of

variability in typical scenarios. Such fadors include
» gspedker dependence

* regional accents,
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* text dependence

» channel dependence and

*  noise.

We base our ALR system on modelling different languages with higher-order variants
of ergodic HMMs. In thisway, a model of the sounds and sound clusters occurring in
the particular languages can be aquired. We will show that this can ke dore while
avoiding the formidade obstacle of phoretically transcribing the large speeth

database that this problem demands.

In Sedion 4.2 we supply some background information on ALR. We position our
ALR approad relative to some systems reported in literature. We then conduct two
setsof ALR experiments. Sections 4.3, 4.4 and 4.5 discuss database, signal processing
and modelling concepts common to both sets. In Sedion 4.6 we extend the simulation
results of Sedion 3.5 by using both FIT and extended/ ORED training to model the
English and Hindi languages with second- and third-order ergodic HMMs. The results
correlate with those we found in the simulations, namely that the FIT models are more
compad and provide cmparable or better acaracy. In the second set of experiments
(Sedion 4.7), we investigate the use of combining explicit context and duration
modelling (see Sedion 3.3.3) in ALR systems. Although showing promising
tendencies, the amount of testing data was only sufficient to reveal significant
differences between the baseline HMM 1 and the various higher-order HMMs. In spite
of this, useful indicaions of the caoability of these techniques, and how they differ
from standard fixed-order modelling, emerge. Sedion 4.8 indicates that, compared to
other systems not requiring transcriptions, our system is indeed very successul. Even

when compared to a very popular group of ALR systems that do require
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transcriptions, we ae quite competitive. In Sedion 4.9 we include alist of obvious
enhancements that a future ALR system, based on our HMM methodology, should

include.

4.2 Background on language recognition

We do not intend to provide full coverage of the available literature on ALR in this
sedion; the interested reader can find excellent material on thisin Zissman (1996 and
Muthusamy, Barnard and Cole (1994). Instead we will provide abroad outline of and

comment on the main approacdes and show how this relates to our own work.

Useful feaures for language recognition appea at different levels (Bond & Fokes,
1991 House & Neuberg, 1977. Acoudtic-phonetics describes the nature and
inventory of phonemes. Prosodics cover duration and intonation. Phonotactics
describe the rules acording to which phonemes may combine in a given language.
The lexicon of a given language, and the syntax, ac@rding to which its words may
combine, are also language specific features. Other distinctions are also possble
(Kadambe & Hieronymus, 1995. While aoustic-phonetics and prosody are useful for
ALR (Hazen & Zue, 1997, Marcharet & Savic, 1997 Lund, Ma & Gish, 1996 De
Bruin & Du Preez 1993 Sugyama, 1991; Foil 198; Goodman, Martin & Wolford,
1989, they do not diredly contribute to the discussion at hand and will therefore not
recive any special attention here. The focus of this chapter will rather be on
describing the phonotactic structure present in a language through the use of higher-
order HMMs. Some dtention will also be given to how our work relates to large
vocabulary continuous gpeed remgnition (LVCSR) based language recognition

systems.
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Partly due to a ladk of good transcribed databases, ealy ALR attempts focussed on
techniques that do not require such resources. The use of ergodic HMMs to model
untranscribed sequences of speech symbols was first suggested by House ad
Neuberg (1977. The basic idea is to use the transition probabilities of the HMM to
model phonotadic constraints on pairs of phonemes or broad phonetic caegories.
Using 5state e@godic HMMs Savic, Acosta, and Gupta (1991) managed faultless
identification of four languages. The database used for the test was, however, rather
small. Zissnan (1993 turned the tide ajainst the use of ergodic HMMs when he
concluded that it showed no advantage over smple Gausgan mixtures, which, of
course, do not model phonotactics, but rather acoustic-phonetics. In our own work, we
found ergodic HMMs quite useful on high quality speech (Du Preez 1991b). The
acaracy of this dired approach was, however, reduced when used on telephone
speech (Du Preez 1992. Inspedion revealed that the aoustic component as refleced
in the HMM densities (pdf.s) were ntributing to this loss of acairacy, probably due
to the interadion with the telephone channel’ s transfer function. A solution to this was
to use one common set of densities for all the language HMMs involved (Du Preez
1992 1993. This prevents systematic biases in the a®ustic component of the model,
and focuses the system on the phonotactic information contained in the transition
probabilities. With such a system, we managed acairacy in excess of 90% for athree
language ALR system. Subsequent work by Mendoza et al. (199%) confirms the
usefulness of desensitising the system to the aoustic component. In their system,
after matching the speech to a model, they completely remove the aoustical
component from the resultant score. This contrasts with the previous conclusion of

Zissman (1993 who found no benefit in the structural component of the HMM.
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The next generation of ALR systems employed as first stage a phoneme recogniser
that transforms the speech into a sequence of (non-ideal) phoneme labels. Several of
these phoneme reagnisers may be used in parallel and they need not correspond to
the languages being modelled (Zissman & Singer, 1994 Yan & Barnard, 1995. An
N-gram or similar model is used to cgpture the phonotadic structure in these
sequences. This information is language specific and therefore allows classification.
Although arbitrary lengths of phoneme sequences can be modelled, insufficient
guantities of training data make bi-grams a popular choice (Zissman 1995). Another
additional fador that we would like to suggest is that, due to the hard errors
introduced by the phoneme reagnition system, the variability in longer phoneme
sequences may just be too large for reliable modelling. Zissman (1995%) averages an
acaracy of 97.9% classifying between pairs of languages (NIST'94 45, set). To
achieve this they also include gender and duration modelling. Yan and Barnard (1995
1996 approximate tri-grams in an efficient manner by combining forward and
badkward bi-grams. Also incorporating (amongst others) duration information, they
achieve arespedable 91.96% acaracy on a six-language test (NIST'94 45%. set). Ina
similar vein Navrétil and Zihlke (1997 enlarge the phonotactic context by combining
two hi-gram models, in this case the standard backward bi-gram and the bi-gram
obtained by considering the aurrent and once-removed previous phoneme (termed a
skip-gram). Kadambe and Hieronymus (1999 uses a Continuous Variable Duration
HMM, trained from transcribed data, to model phonemes. They argue that Consonant
Vowe Consonant (CVC) clusters are dfedive for describing languages. They
therefore imbed these phoneme models into a second-order ergodic HMM, its

transition probabilities being estimated from text (tri-gram analysis). Classifying
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language pairs (NIST 94 45s. sat) they obtain results varying from 86% up to 100%

(average 94.8%), depending on the specific language pair.

From our perspedive, the advantage of this phoneme recognition followed by N-gram
approach lies in its ability to make use of a wide phoneme ontext. Due to data
scacity though, this is often not exploited fully. Another advantage is that
linguistically well-defined concepts are brought to bea upon ALR. On the down side,
later statistical modelling can nrever fully compensate for hard decisions about
phoneme classes introduced in the ealier stages of the system. Another very
important disadvantage is the requirement for transcribed databases. Establishing
transcribed speech databases and phoneme reaognisers for new languages is very
costly. Using existing phoneme recognisers from other languages can at most be a
useful surrogate (Lund, Ma & Gish, 1996, which is likely to deaease performance
with dissimilar languages (such as the indigenous languages of Africa; South Africa
has 11 official languages). Such crossusage also detrimentally prevents inclusion of

language dependent fadors during the phoneme recognition phase.

The next generation of ALR systems enhanced contextual modelling while avoiding
the dangers of ealy hard decisions by incorporating lexica and linguistic modelling
(Kadambe & Hieronymus, 1995 Mendoza Gillick, Ito, Lowe & Newman, 1996
Schultz, Rogina & Waibel, 1996 Hieronymus & Kadambe, 1997. Modédlling
languages through Large Vocabulary Continuous Speech Recognition (LVCSR)
systems promises very accurate systems. On the NIST'95 45 «t, Mendoza et al.
report acarades excealing 996 on alanguage pairstask. It is interesting to reflect on
some apeds of such a system from a higher-order HMM perspedive. Although the

state-level structure, internal to phoneme and word models, typicaly makes use of
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first-order transitions, the larger word-level structure is based on external knowledge.
Typically a left-to-right no state-skip structure is used, which can be shown to be a
special case of our context-emphasised models introduced in Sedion 2.5.3. Word
structure implicitly creates a larger context within which each of the first-order
transition probabilities operates. In a cetain sense then, a word model can be thought
of as a first-order redisation of a higher-order spedfication. A language model, N-
gram or otherwise based, extends this concept even further. Therefore, from our
perspedive, a LVCSR based ALR system resembles to a cetain extent a large mixed
order HMM. External knowledge plays a large role in demarcating its gructure while
training refines its parameters within the given boundaries. The main disadvantage of
this approach lies in the extreme expense of credaing a LVCSR system for a new
language, dwarfing even that of a phoneme-recognition system (which often is one

sub-component of it).

The expense of creding transcribed databases for new languages has led some
reseachers to (re)consider once ajain techniques that do not rely on this. Lund et al.
introduces a system, focussing on acoustic-phonetic aspeds, that do not require any
transcriptions during training. By using time-varying trajectory models of speech, and
experimenting with the use of various databases for training, they achieve an average
acarracy of between 85.2% and 93% on language pair tasks (NIST'95 4%. set),

depending on the training databases incorporated.

In summary, the strength of current successful ALR systems lies in their ability to
model long contexts of speech. Possible wedknesses lie in the ealy use of hard

decisions, and the expense incurred by the need for transcriptions. In the following
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sedion we will addressthe wegknesses, while a@tempting to maintain the strengths as

far as possible.

4.3 Database and signal processing

Our prior work with first-order HMMs (Du Preez 1993 indicaed that about 1 hour
of speech was adequate for modelling a language. Preliminary experiments indicated
that the higher-order Markov models would need substantially more data. Since they
need not be transcribed, this does not necessarily pose aproblem. From the OGI-TS
database®!, we had rougHy 100 minutes of freeformat English and Hindi speech
available as training data. These were the two largest colledions® of data available to
us and were therefore used in the experiments. Silence sedions in the recordings were
removed automatically by using an energy criterion. The power in the remainder was
normalised to compensate for recording volume. After pre-emphasis, tenth-order
LPC-cepstra (Markel & Gray, 1976 Davis & Mermelstein, 1980 and delta-cepstra
(Lee 1989 p 65) were cdculated from 32ms time frames aceal at 16ms. intervals.
Cepstral mean subtradion (Atal, 1974 Furui, 1981 was used to compensate for
channel variation. For testing data we processed a set of independent 5s sgments, as
well as the 455 NIST'95 LID set, in a similar manner. Each language model had its
own transition probability description, while one eentral set of pdf.s was referenced
colledively by all the language models. This shared pdf. arrangement was first

reported by us (Du Preez 1995).

31 The Oregon Graduate Institute kindly made the OGI-TS database available to us.
32 The other recordingsin this corpus have about 60 minutes per language available.
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4.4 Basic system structure and initialisation

In applicaions like word recognition, a left-to-right HMM is normally used (Rabiner,
Juang, Levinson & Sondhi, 1985. In an application like language recgnition, the
model might start off in any one of a number of states and move to and fro between
states as dictated by the charaderistics of the particular language. The strict left-to-
right form normally used is too redrictive for this stuation and a more general
structure is called for. In previous work (see Section 4.2) we successfully utilised the
first order ergodic HMM (illustrated in Figure 4-1), for modelling a language. The
ALR system consists of a bank of such models, ead optimised to a spedfic language.
Unknown speech is matched to ead of the models and classfied acwrding to which
one fits best. As also discussed in Sedion 4.2, sharing only one set of pdf.s between

all the language HMMs enhances robust recognition.

Figure 4-1. A four-state egodic HM M. (States0 and 5 aretheinitial and final
null states.) We based our experiments on sixteen-state egodic HMM s.

In the following sedions, various extensions of this basic ergodic structure (we use a
sixteen-state version) will be investigated. Because of the presence of local optima, it
is important to initialise an HMM properly before training takes place. Models
derived viathe FIT algorithm are auitomatically initialised with the parameters of the

models that they extend and therefore ultimately only require the initialisation of the



Chapter 4 High-order HMMs applied to Automatic L anguage Recognition 93

basic sixteen-state first-order HMM. Models diredly trained via the ORED reduction
were mnfigured using an order expanding procedure similar to that occurring within
the FIT algorithm itself (Seestep 3) on page 64). In this processthe initial parameters
of the sixteen-state first-order ergodic HMM are transferred to the higher-order
HMM. It is, therefore, only necessary for us to consider the initialisation of the basic

first-order HMM.

Before configuring any models, the training data for both languages were pooled and
clustered into 16 dagonal Gausdan clusters. This was done by first using a non-
uniform binary split K-means algorithm (Gray, 1984 to find the gproximate duster
centres. These aentres were then used to initialise Gaussian clusters, which were re-
clustered using a dynamic clustering procedure (Devijver & Kittler, 1982 pp 407 —
413). This st of pdf.s was used to initialise the first-order ergodic HMM. All self-
looped transitions in this model were initialised to a value of 0.8. At ead state the
remaining part (not devoted to the self-loops) was greal equally over the remaining
transitions. This base model is diredly (via order expansion) or indiredly (viathe FIT

algorithm) used to initialise all other models.

4.5 Training procedure

Because it is much faster and in pradice gives comparable performance to the Baum
Welch algorithm, all training was done using the Viterbi re-estimation algorithm
(Levinson, 1985 Picone, 1990. Higher-order models were always reduced to
equivalent first order form by using the ORED algorithm, enabling the use of the first-
order re-estimation algorithm in all cases. The Viterbi algorithm includes a matrix that
reaords the optimal path between states as a function of time. In a first-order HMM

system, the product of the number of states with the number of time frames in the
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speech segment, dictates the size of this matrix. To reduce the demands on memory,
the training sequences were subdivided into 5s sequences that formed the basic

patterns presented to the system.

The pdf. component, common to all the language models, was implemented as a
shared structure. Only after all the training exemplars had been presented to their
respedive models, did upditing of the cmmon set of pdf.s as well as the individual
sets of transition probabilities, take place®’. To avoid umecessry computation,
redundant transition probabilities, pdf.s and states were pruned after ead training
cycle. These cycles were repeded until the increase in tota likelihood deaeased
lower than a specified threshold. Extended/ORED-based training diredly used this
procedure, while the other models used it to train incrementally from ealier models

(acoording to the FIT procedure).

Transitions originating at the initial state or leading to the final state occur only once
in a5s sgment and thus were very sparse. We wanted to alow the system to gart off
in any of the original sixteen states, and also to be &le to terminate a any of them.
This was done after training by resetting the transition probabilities leading from the
initial state to all be equal (value 1/16). Transition probabilities lealing to the

termination state were dl set to an unity value®.

33 This means that model's cannot be optimised separately, but aretrained simultaneously.

3 Strictly speaking this violates the probabili stic base since probabilities at those states will exceed a
total value of one. Since this arrangement merely passs the likelihood values at those states diredly
throughto thefinal state, we accepted this inconsistency.



Chapter 4 High-order HMMs applied to Automatic L anguage Recognition 95

4.6 Comparison of FIT- vs extended/ORED-trained HMMs

4.6.1 Topology and training method

To verify the results obtained with the simulations of Sedion 3.5.2, we extended the
basic system of Sedion 4.4 to second- and third-orders. Dired training via the ORED
reduction results in models X2 and X3 (X for eXtended/ORED; generically we will
refer to the group of models as Xm). Training via the FIT algorithm resulted in
models F2 and F3 (F for Fixed order FIT; genericdly we will refer to the group as
Fm). For reference we also include the results from the base-line first-order system

(Model 1). Training proceeaded as discussed in Sedion 4.5.

4.6.2 Computational requirements

To explore the mmputational cost of training va the FIT or extended/ ORED
approadhes, parameters determining this were recrded during the training process
The memory requirements, shown in Figure 4-2, are based on the spacerequired by
both the Viterbi-paths matrix, as well as a sparse representation of the transition
probabilities themselves. During training the X2 model requires close to 1.5 times the
space of the F2 model. With the third-order model this escalates close to 8 times

larger®.

For the CPU calculation we ignored the antribution of evaluating the pdf.s and only

considered the processing requirements of the transition probability component. For

35 Other informal experiments indicate that this gets even worse for models with more states or higher
orders.
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models with many transitions and relatively few pdf.s (as is often the cae), this
dominates the CPU usage. The F2 and X2 models required approximately the same
amount of transition operations®®. The F3 model trained close to fifteen times faster
than the X3 version. Figure 4-4 reports the number of transition probabilities in the
trained models, thereby indicaing its compadness. From this it is clea that the FIT
algorithm results in much more @mpact models, getting more so as the order

increases.

7000 4 - - - - - - - -0
6000
5000 f - - - - - - - - - -
4000
3000 + - - - - - - - - -
2000 + - - - - - - - - - - - -
1000

A ext/ORED
BFIT

Required Memory (kB)

Markov Order

Figure 4-2. Maximum memory requirementsduring training of the HMM s.
Based on the size nealed for the Viterbi path matrix for a 5s chunk of speed, as
well asthe memory required to storethe transition probabilities (using asparse

representation).

Table 4-1 summarises the computational requirement as well as the final number of
transition probabilities in the resultant FIT trained models relative to the

extended/ORED approach. Clealy the FIT approac results in more compact models.

3 We cnsider thisresult to be somewhat of a outlier sincethe FIT agorithm iterated unusualy long in
this case. If the same number of training cycles were used, the FIT algorithm would have used lessthan
60% of the number of calculations required for the dired approach. In our experience the FIT
algorithm usualy converges in fewer cycles than the dired approach. Never the less we report the
figure aswe found it.
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The large computational differences found in especially the F3 vs. X3 models are

sufficient to justify the use of the FIT algorithm.
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Figure 4-3. Number of transition probability operationsrequired during the
training of the HMMs. (Averaged over the English and Hindi models.)
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Figure 4-4. Number of transition probabilitiesin thetrained HMMs. (Averaged
over the English and Hindi models.)
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Table 4-1. Comparison of computational requirementsand final model
sizesfor 16-state e@godic HMM strained via extended/ORED and FIT

algorithms.
Ratio FIT/ORED
Order MEM CPU Size
2 69% 94% 70%
3 13% 7% 5%

4.6.3 Classification accuracy

Having discussed some key parameters for the training of these high-order HMMs, we

now turn our attention to the acairacy of the resultant models.

Table 4-2. Accuracy measured on training set for 16-state egodic HMM s
trained via extended/ORED and FIT algorithms.

5s(2169trials) 45s (339trials)
Order | ext/ORED FIT | ext/ORED FIT
1 83.4% - 92.6% -

2 86.8% 852% | 953%  953%
3 927%  896% | 988%  99.1%

Table 4-3. Accuracy measured on testing set for 16-state egodic HMM s
trained via extended/ORED and FIT algorithms.

5s(247trials) 45s (39trials; NIST’ 95)

Order | ext/ORED  FIT ext/ORED HT
1 69.2% - 82.1% -
2 75.7% 76.1% 87.2% 89.7%
3 79.8% 79.8% 89.7% 97.4%

Table 4-2 and Table 4-3 summarise the acaracies of models trained via the FIT
algorithm and those trained viathe extended/ORED approadh. On thetraining data the
acarracy of the FIT and extended/ORED trained models are comparable. On
independent testing data, however, in all cases the FIT trained models perform
similarly or better than the extended/ORED trained models. Furthermore, all the FIT
trained models result in smaller differences between training and testing set acairacies
than those adieved by the extended/ ORED trained models. This, combined with the
larger models that resulted from extended/ORED training, indicaes greder

specialisation in such models. With the 5s clasgficaion trials, a McNemar test with a
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90% significance level (see Appendix C.3.3) shows all the higher-order models to be
more acarate than the baseline HMM1. Due to the rather small test set, the
experiment based on the NIST’95 45 st (39 trials) could only show the 3-order FIT
model (F3) to be more acarate than the 1¥-order HMM on a 90% significance level.
No significant differences could be deteded between the extended/ORED and FIT
trained models. This is accomplished at a much-reduced computational cost. In

general the results confirm those found in the simulations of the previous chapter.

4.7 Independent variation of context and duration orders

In Sedions 2.5.2 and 2.5.3 we introduced topologies that enhance the caability of
high-order HMMs to focus on either duration modelling or modelling the context of
different previous dates (termed context modelling for brevity.). From the first we
defined the duration ader D as the maximum number of repetitions of the arrent
state that is taken into acaount when making a transition to a next state. The context
order C was defined as the maximum number of distinct previous gates (ignoring
repetitions) that are taken into acount when making a transition to a next sate. In
Sedions 3.3.1 and 3.3.2 we have shown that the FIT algorithm can be alapted to this
type of modelling. Sedion 3.3.3 discusses possibilities of using them in combination
to adhieve independent control over C and D. To gain better insight into these
techniques and to investigate specifically the role that C and D plays, they are now

applied to ALR in the following sedions.
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4.7.1 Topologies used

In this sedion we experiment with some extensions to higher-order HMMs which
shows promise for ALR. In Figure 4-5 we cdegorise them by noting their context and

duration orders (C and D), aswell astheir FIT training-dependencies.

Figure 4-5. Identitiesand FIT training dependencies (indicated by arr ows) of
ALR models. Cisthe mntext order and D istheduration order.

Model 1 is the same first-order 16 state e@godic HMM that we used in Sedion 4.6. It
serves as a base-line model and all other models are extensions of it. The fixed-order
models F2 and F3 (generically termed Fm) are also diredly imported from this
previous ®dion. As noted in Sedion 2.5.3 (p. 50), training on data patterns that
repeds before moving on to a new state, can effedively diminish the C value of
models and/or portions thereof. The C2 and C3 models (generically termed Cm),
while negleding duation modelling are ensuring that the system “knows’ about
respedively 2 and 3distinct prior states when making a transition to a next state. The
longer history that is being modelled by maintaining the C values in this way,
necessarily makes these models more sensitive to training data deficiencies. Models

D1 and D2 (generically Dn) adds duration to model 1, while C2D2, C2D3, C3D2 and
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C3D3 (generically CmDn) add duation information to the respedive models which
they extend. DnCm models were not considered since they, similar to the Fm nodels,
aso suffer from a reduced context order when trained on repetitive data (see
Sedion 3.3.3 p. 69). We do not suggest that the @ove topologies are the only viable

ones. Investigating athers, however, is reserved for future work.

4.7.2 Model sizes

The number of transition probabilities in the trained models is shown in Figure 4-6.
From this it is quite clear that the various Cm nodels are considerably larger than the
corresponding Fm models (though still smaller than the Xm models considered in a

previous gdion; C3D3 is five times smaller than X3 — marked ext/ORED R=3 in

Figure 4-4).
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Figure 4-6. Number of transition probabilitiesin thetrained HMMs. (Averaged
over the English and Hindi models.)

It must be kept in mind though that these topologies were designed for different
purposes. We susped that the growth in the number of transition probabilities of the

Cm models can be dtributed to the larger history of states that it is modelling. The
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longer such ahistory is, the greater the potential number of state combinations will be.
When duration modelling is added to form the CmDn models, it is done on an already
enlarged model, thereby contributing to a marked growth in the number of
parameters. As previously explained, multiple feaure frames describing the same

phoneme hamper context modelling in the Fm models.

4.7.3 Classification accuracy on training set

The classification acarracy on the training set is given in Table 4-4. The alded benefit
of each successive FIT extension is clear. The rapid incresse in accuracy of the

various context-emphasised models indicaes an increasing ability to fit the training

data.
Table 4-4. Training set classification accuracy for different models.
5s (2169trials) 455 (339trials)
Ctx\Dur D=1 D=2 D=3 D=1 D=2 D=3
C=1 1: 83.4% D2: 84.1% D3: 84.6%] 1:92.6% D2: 94.1% D3: 94.7%
F2: 85.2% F2: 95.3%
o . 0 . 0 . 0 . 0
C=2 | C2:89.0% C2D2" 90.3% C2D3: 91.4%| C2: 98.5% C2D2" 99.1% C2D3: 99.1%
F3: 89.6% F3: 98.8%
o . 0 . 0 . 0 .
C=3 | C3:94.6% C3D2:95.4% C3D3: 97.3% C3:99.7% C3D2: 100% C3D3: 100%

4.7.4 Classification accuracy on testing set

Table 4-5 reports the clasgfication acarracy on an independent set of testing data. In
general the pattern of improvement with each new FIT extension is followed. At the
C=2 level, the mntext-emphasised models appea to function very competitively. We
susped that our training detabase was too small to sugtain the long history span
utilised at the C=3 levels. The large difference in acairacy between the training and
testing sets (i.e. specialisation is taking place) for the C3 family also confirms this. In

general models benefit from duration modelling.
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McNemar significance tests reveal almost identical results to those obtained in
Sedion 4.6.3. In general the higher-order models improve on the baseline HMM 1,
while no interesting differences could be deteded between the higher-order models

(seeAppendix C.3.3).

Table 4-5. Testing set clasgfication accuracy for different models.

Bs(247trials) 455 (39trials; NIST’'95)
Ctx\Dur D=1 D=2 D=3 D=1 D=2 D=3

C=1 1:692% D2:794%  D3:80.6%| 1:821% D2:923%  D3:923%

F2: 76.1% F2: 89.7%
— . 0 . 0, - 0, . 0,
C=2 | C2:757% C2D2 78.1% C2D3: 77.7%| C2: 92.3% C2D2 92.3% C2D3: 94.9%
F3: 79.8% F3:97.4%

o . 0 . 0 . 0 . 0
C=3 | C3:76.9% C3D2:76.1% C3D3: 76.5% C3:89.7% C3D2: 89.7% C3D3: 94.9%

It is safe to conclude that increasing the duration and/or context orders is indeed
beneficial, as long the training dhtabase is large enough to sustain it. The various
CmDn models hold much promise for ALR, but neads more extensive testing on
larger databases. Although it might seem unfair to compare results from the simple
first-order model to that of large higher-order models, the purpose of these
experiments was to investigate the role of context and duation modelling HMMs, and

not to compare models containing an equal number of parameters.

4.8 Comparison with prior work

The best ALR system (F3) from the previous sdion can be described as 1) not
needing a transcribed training database while 2) primarily relying on phonotadic
constraints as the principal source for language identification. To compare with other
systems, we will only consider our results for a two-language task, namely 3) using
the NIST’ 95 45 <t for English and Hindi data. Unfortunately, we could not find any

dired comparisons for this gecific language pair in the available literature.
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Furthermore, thisis arather limited test set. Therefore results should correspondingly
be interpreted as providing only a broad indicaion of behaviour. It should also be kept
in mind that most of the systems that we will compare with are optimised products
including many enhancements. Our system was designed to illustrate high-order
HMM concepts. Many enhancements are available to improve it further (see

Sedion 4.9).

Thiswork is conceptually similar to the original work by House and Neuberg (1977,
Savic et al. (1991) and to Du Preez (1991b-1993. Unfortunately, as dandardised
ALR databases were not yet available, those ealy efforts used small in-house
databases and direct comparison is not possible. By duplicating our original work
using the OGI- TS database, we have shown in the previous sdion that higher-order

HMMs can significantly improve on those ealy systems.

Lund et al. (1996 introduces a system, focussing on acoustic-phonetic aspeds, that
does nat require any transcriptions during training and can thus be diredly compared
to our work. On language pairs from the NIST’ 95 set, they achieve acaracy ranging
from 85.2% to 93.6%. Although based on different principles, the 97% acairacy that

we adhieved compares well with this.

To make further comparisons, we need to look a techniques that do incorporate
transcriptions in the training process The phoneme-recognition followed by N-gram
approadh is related to ours in the sense that both focus on phonotactic information.
Zissman (199%), aso modelling gender information and using interpolation to
smooth transition probabilities, averages an accuracy of 97.9% when classfying

between pairs of languages (NIST'94 45%. set). With a fairly sophisticated system
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Kadambe and Hieronymus (1995 adieve results varying from 86% up to 1006

(average 94.8%), depending on the specific language pair.

From all of these results, taking into account that our system does not implement
enhancements and also does not require transcribed databases, we @nclude that
higher-order HMM modelling can result in competitive ALR systems. Indicétions are
that, since our system cannot benefit from prior information in the form of pre-trained
phoneme models, it will also require larger training databases for adequate training.
Finally, we also exped that approaches based on explicit phoneme reagnition
precaling N-gram nodelling will degrade more rapidly when presented with difficult
conditions such as those found on very noisy channels. Since our system does not use

ealy hard decisions, degradation should be more graceful.

The investment required for, and complexity of, LVCSR based ALR systems put

them outside the scope of systemsthat are mwmparable to our approach.

4.9 Outstanding issues

We view the ALR experiments of Sedion 4.7 as a prototypicd demonstration of
concept. Many necessary refinements are asent from it and there ae dso several
aspeds that require further investigation. In order to expand it into a full-blown ALR

system incorporating many languages, at least the following should receive dtention:

1) From the precaling work it is clea that several topologies are useful. The

different alternatives (existing and new) must be investigated further.

2) Other parameters like the order (standard, context and duration) and the number of

states neal to be optimised.
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3)

4)

5)

6)

7)

A thorough investigation of the relationship between the size of the models and

the size of a database sufficiently large to train it is necessary.

Aswe can accept that we will never have quite enough training ceta, we dso neel
to smooth the values of badly estimated higher-order probabilities using better
estimated lower order probabilities. Interpolation techniques are commonly used

in N-grams applications (Zissnan, 1995).

From previously cited work it is quite clea that explicitly incorporating gender in
the models, will increase acaracy. A simple and frequently used approach to do
thisisto smply use separate models for the sexes, possibly combining their scores

in a soft manner (Zissman, 1995%).

Previous work (Mendoza et al., 199%) indicates the usefulness of explicitly
removing the aougic component from the resultant score when matching
unknown speech to a language model. Although our system uses a common
aooustical model for the languages concerned, removing it altogether from the

final matching score should be investigated.

The arrent syssem nodels pseudo-phonemes (or broad sound categories) with
single HMM states. It may prove fruitful instead to imbed detailed phoneme
modelsin alarger HMM. Similar to our context model, these sub-models can then
be aranged in the bigger structure to allow higher-order modelling of specific
sequences of them. This dructure can be grown incrementally by using a special
form of the FIT algorithm. This approac is likely to re-introduce a requirement
for transcriptions, although this can be limited to initialising the sub-models.
Alternatively, related models can be “grown” by subdividing states in our current

system (Ostendorf & Singer, 1997).
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4.10 Summary and conclusions

This chapter shows that the FIT algorithm is indeed pradica for training large real-
life high-order HMMs. It confirms the benefits over extended/ORED training that we
found in previous simulation experiments. The FIT algorithm provides greder
computational efficiency, results in more cmpad models and if anything, increases
acaracy. We demonstrated some very promising prospeds for implementing ALR
systems that do not neead transcriptions. We also demonstrated tedhniques that achieve
independent control over context modelling (modelling sequences of conseautive
states while ignoring their individual repetitions) and duation modelling (modelling

the duration/repetitions for which a specific state is adive) in higher-order HMMs.
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Chapter 5 Conclusion

5.1 Concluding perspective

As noted in the opening paragraphs of this dissertation, high-order HMMs have, until

now, generally been considered to be powerful but unpradically expensive, with

cgpabilities excealing those of the popular first-order HMM. This work helps to

capture this elusive power. Our perspedive isthat HMMs of all orders are just simply

first-order HMMs, and can all be expressd in a common form by using the ORder

rEDucing (ORED) algorithm (Sedion2.3). They all share the same inherent

representational capacity. Highrorder transition proballiti es are ssimply an elegant

mathematical way of spedfying the topdogy of the model. This insight cuts through

the aonfusing aspeds to expose the important high-order HMM isaues:

How can they be trained efficiently? The topology arising from high-order
specification can result in such arich set of parameters that training them can be
prohibitive. To this end we developed the Fast Incremental Training (FIT)
algorithm (Sedion 3.2). It utilises the relationship between transition probabilities
of different ordersto incrementally avoid the clculation of redundant parameters.

This can substantially reduce computational requirements.

How can training methods improve the quality of the resultant model? The
parameter space that is being optimised haes local optima. Large pattern
reagnition systems are prone to train to optima that provides a good fit to (the
pealliarities of) the training data, but does not generalise well on previously
unseen data. Special strategies are necessary to avoid this. The FIT algorithm does

so by first optimising on less complicaed parameter spaces and then
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incrementally expanding it to better-behaved larger parameter spaces (Sedions 3.5

and 4.6).

* How can we design topologies to provide spedfied functionality? This is a very
rich field that can now be aldressed through the use of high-order hidden Markov

modelling. We have found the following wseful topologies:

¢ Itisimmediately clear that first-order topologies can be imbued with a greaer
sense of context by expanding them to a (fixed) higher order (Sedion 2.5.1).

The patential, however, isricher than this.

¢ Specifying high-order transition probabilities to emphasise the modelling of
state duration while maintaining inter-state dependence 4 first order results in

the well known Ferguson duration modelling topology (Sedion 2.5.2).

¢ In phonotactic modelling (used in automatic language recgnition systems),
the combinations of distinct phonemes are of importance In pradical systems,
the short analysis frames (typically 10 to 20ms) cause gparent phoneme
repetitions, but in reality they refled duration and not phonotactic information.
Using high-order transition probabilities, we were @le to design a topology

that can guarantee a ceain width of phonotactic context (Section 2.5.3).

¢ This enhanced context modelling can be cmbined with duration modelling
resulting in topologies with independent control over the duration and
phonotactic (distinct state) contexts (Sedion 3.3.3). These topologies were

shown to be goplicable to automatic language reaognition (Sedion 4.7).

Topology design also includes an interesting asped not addressed here. In the field of
information theory, the automatic determination of the number of states and topology

of HMMs are receiving attention (Liu & Narayan, 1994. Similarly, techniquesto grow
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larger HMMs by subdividing the states of smaller models are also being reseached

(Ostendorf & Singer, 1997). These techniques aim to infer the gpropriate topology

diredly from the training data done. Our high-order HMM approach also benefits

from external knowledge aout the desirable dharaderistics of the model. It will be

interesting to follow the interplay of these goproadhes in future work.

5.2 Topics for further study

This dudy is afirst exploration of arich, multi-faceed and largely unknown field. By

necessity many aspeds are negleded. Some of them are listed in the following:

In Sedion 3.3 we discussed the possibility of analysing the states and transitions
of a trained fixed-order HMM to deted the presence of mixed-order transitions.
By a process of state tying and/or merging followed by retraining (possibly
iterative), the number of free parameters in the model can be reduced, thereby

enhancing its robustness while deaeasing its computational demands.

A study on the exad mechanisms involved when incrementally training (or
growing?) the parameters of a model (as the FIT algorithm does) can be very
useful. The way in which this guides the model to converge on better local optima

will provide perspedives applicable to pattern reagnition systems in general.

The concept of using hgh-order transition probabilities to design topology isin its
infancy. The examples that we do have were brought about by spedfic gplicaion
requirements. Reseach is nealed to determine the scope of this technique and
establish procedures for pradising it. Thiswill leal to topologies optimised to the

reguirements of specific goplicaions.
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The relationship between the size and structure of a model, and the size of a

database sufficiently large to train it, must be investigated.

Due to the large number of parameters in high-order HMMs, tedhniques providing
robustnessagainst training data scarcity is a major issue. With the exception of the
convergence properties of the FIT algorithm it receved no atention in this
reseach. We exped that techniques from language modelling (Jelinek, Mercer &

Roukos, 199) will be gplicable here.

Our methodology invites large-scale pradica application. The work in Chapter 4
is a single demonstration of its applicability to ALR. An evaluation using larger
training and testing databases is necessary to make firm conclusions possible. It
should include more languages and incorporate the enhancements listed in

Sedion 4.9.
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Appendix A Detailed example of the ORED procedure

In Sedion 2.4.1 we briefly demonstrated how the ORED algorithm reduces a simple
mixed-order HMM (shown in Figure A-1) to its equivalent first-order version. This

sedion provides the step-by-step detail s for this process

Figure A-1. A mixed-order HMM (maximum order 3).

Iteration 1:
Step 1la Createthe states S=0, 1, 2, 3and 4
Step 1b: Addto them the states S=(1,2), (2,2), (2,3), (3,3), (1,3) and (3,4)
Step 1c: Not applicable (Q=4 isonly entered by links originating at Q=3)
Step 2a: a,, between S=0 and S=1
a,, between S=1 and S=1
a,, between S=1 and S=(1,2)
a,, between S=1 and S=(1,3)
Step 2b: a;,, between S=(1,2) and S=(2,2)
a,,,, between S=(2,2) and S=(2,2)
a,,; between S=(1,2) and S=(2,3)
a,,,, between S=(2,2) and S=(2,3)
a,,,; between S=(2,2) and S=(2,3)

a,,; between S=(2,3) and S=(3,3)



Appendix A Detail ed example of the ORED procedure 122

ay,, between S=(1,3) and S=(3,4)

a,,, between S=(2,3) and S=(3,4)

a,,, between S=(3,3) and S=(3,4)
Step 2c: Not applicable
Step 3: Remove states S=2, 3 and 4.
Step 4: S=0and (3,4) are null states.

f, tos=1

f, t0S=(1,2) and (2,2

f, t0S=(13), (23) and (3,3)

(SeeFigure A-2 at this point. Step 3 is omitted to show the full set of states.)

Figure A-2. ORED iteration 1, after completion of step 4. Dead states S=2,3 and
4, are supposed to be removed in step 3, but are kept toillustrate all states.

Step 5a States S are renumbered to form the states Q for the next cycle &

shown in Figure A-3
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Step Sb: Astransition probabilities @, a5 ad A5 (122222 1 A122223)
and &, 52223 N Figure A-2) contains more than two subscripts (i.e.

they have an order > 1), we now iterate by returning to step 1 with

Figure A-3 as initial model.

Figure A-3. ORED iteration 1, after completion of step 5a. Thisistheinitial
model for the next iteration of ORED. Only links departing from S=3 are still of
order higher than one.

Iteration 2:
Step 1la: Createthe states S=0, 1, 2, 3,4, 5,6 and 7
Step 1b: Addto them the states S=(2,3), (3,3) and (3,5)
Step 1c: Not applicable (Q=7 isonly entered by first-order links)
Step 2a a,, = a;, between S=0 and S=1;
a,, = a; between S=1 and S=1

a, = a, between S=1 and S=2
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a,, = a,; between S=1 and S=4
a,; = a,,, between S=2 and S=(2,3)
a,s = a,,; between S=2 and S=5
ag, = a,,, betweean S=5 and S=6, between S=(3,5) and S=6 (tied)
a,, = a,,, between S=(1,3) and S=(3,4)
ay, = a,,, between S=4 and S=7, between S=(3,5) and S=7 (tied)
ag; = a,,, between S=6 and S=7
Step 2b:
A3 = &y,,, between S=(2,3) and S=(3,3)
Ay = Ay, between S=(2,3) and S=(3,5)
Ay = A,y,,; between S=(3,3) and S=(3,5)
Step 2c: Not applicable
Step 3: Remove state S=3
Step 4: S=0and 7arenull states.
f, tos=1
f, t05=2, (2,3 and (3,3)

f, t0S=4,5,(35) and 6

(SeeFigure A-4 for result at this point. Step 3 is omitted to show all states.)
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Figure A-4. ORED iteration 2, after completion of step 4. Sincethere are only
first-order transition probabilities present in model, step 5 will be followed by
termination in step 6. Transition probability valuesto the left of the assgnment
still refer to Figure A-3. Dead state S=3is supposed to beremoved in step 3, but
iskept to show all states. States S=5 and S= (3,5) aretied.

Step Sa. States are renumbered.
Step 5b: All transition probabilities have only two subscripts i.e. they are all
of first order.

(SeeFigure A-5 for result at this point, once aain step 3is omitted.)



Appendix A Detail ed example of the ORED procedure 12¢

Figure A-5. ORED iteration 2, after completion of step 5. States S=6 and S=8 are
tied and lead to the same destinations. They can therefore be merged.

Step 6: Since states S=6 and S=8 in Figure A-5 are tied and also share the
same succesrs, they are merged into sate S=6 of Figure A-6. States

are renumbered and the algorithm terminates.

Figure A-6. Finally, thefirst-order equivalent of Figure A-1.
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Appendix B ORED reduction for context modelling

In Sedion 2.5.3 we introduced an HMM topology that guarantees that a context of C
(the context order) distinct states will be taken into aacount when making a transition.
We indicated in that sedion that this model is of mixed-order and has a maximum
order of infinity. This makes dired application of the ORED algorithm impossible. In
the following we provide an ORED procedure reducing the model of Figure B-1.
Figure B-2 and Figure B-3 show the result of the ORED algorithm after the first and

seoond cycles.

Figure B-1. Sewnd contextual order left toright HMM with one state skip. The

notation k* isused toindicate one or more occurre nces of index k. The family of
transition probabilitiesindicated by each symbol ain thefigureareall identical.

Figure B-2. Result after first cycle of ORED algorithm on Figure B-1.
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8134

o1 8234

Figure B-3. Result after second cycle of ORED algorithm®’.

37 Merging takes place between tied states that share a common set of destination states for their transitions. The ORED agorithm dictates that merging should take place
during step 6 (after all cycles have ompleted). Merging can be moved to just after step 2 if none of the (common) destination states will split in following cycles. Thisis the
caseif only first order transition probebiliti es enter or leave the destination states. Thisealy merging is used in Figure B-3 to simplify the procedure.

12¢
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From eah of these figures, note the four substructures®® of which a generalised
version is shown in Figure B-4. These piles will grow one state higher with each cycle
of the ORED algorithm. Due to the infinite order of the model they will ultimately be
infinitely high, making dired application of ORED impracticd. The transition

probabilities a . ascending this pile ae all equal to ead other. All the states they

ascend to share the same pdf. f,. Similarly all the transitions leaving the pile share a

common transition probability a'. . This makes it possble to reduce this infinite pile
hij

to the simple model il lustrated in Figure B-5. Applying this reasoning to either Figure

B-2 or Figure B-3 results in Figure B-6 as the first-order equivalent of Figure B-1.

Figure B-4. Repeating (infinite) substructures of Figure B-2 and Figure B-3.

% In Figure B-2 the four groups are (ignoring the single state to the right): {1, 2}, {3, 4}, {5, 6} and
{7, 6}.InFigure B-3they are {1, 2, 3}, {4, 5, 6}, {7, 8, 9} and {10, 11, 9}.
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Py

(——(

Figure B-5. Finiteequivalent of Figure B-4.

Figure B-6. First-order equivalent of theHMM in Figure B-1.
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Appendix C Statistical significance tests

C.1 Overview of McNemar significance test

When comparing two algorithms for classfication acairracy, it is important to bea in
mind that the measured acairacies are also random variables. We therefore neel to
ascertain if the measured differences between them are indeed statistically significant. It

is necessary to test the following two hypotheses in a mathematically principled manner:

Ho: The algorithms are equally acarate.

H1: The algorithms are not equally accurate.

Specifically, if the probability that the differences between the algorithms can be
attributed to chance @n be @lculated, conclusions can be drawn with spedfied certainty.
This quantity is a function of the amount of datathat is used to evaluate the hypothesis. If
only small differences exist between two algorithms, a large set of data will be necessary
to establi sh this with confidence. In other words, the rejedion of H; may be traced to two
sources. Either the two agorithms are in reality equally acairate, or it may be possible
that the set of data used in the test was just not large enough to establish clearly the
difference. The McNemar significancetest is applicable when a number of common data
segments are to be classified with two different algorithms. The joint performance of the

two algorithms can be represented in a 2x2 matrix as follows:

Table C-1. The number of occurrences of joint clasgfication outcomesfor the two
algorithms. N isthe random variable while n isits outcome.

| Algorithm 2
| Correct Incorrect
Algorithm1  Correct Noo=Noo No1=No1

Incorrect N1o=n10 N11=n11
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The Mad\Nemar test takes the viewpoint that Noo and Ni; describe the behaviour common
to both algorithms and should therefore be ignored. The off-diagonal elements N1 and
No1, however, represent the differences between them. The number of occurrences for
which only one of the algorithms made an error is given by K = Nig+Nos, with outcome
K=k. It can be shown (Gillick & Cox, 1989 that under hypothesis Ho, N1o has a binomial
B(k, 0.5) distribution. The probability P of observing the given value an then be
calculated as:
[RP(n, < N,, < k) whenn,, >k/2

P=PP(O< Ny <n,)whenn, <k/2 . (C-1)
H.0 whem,, =k/2

IN,, —k/2|-05
Jk/4

Gaussian random variable. The probabil ity P can then be gproximated as:

For k > 50 and nyo not too closeto Oor k, W = approximates a N(0,1)

P=2PWzw). (C-2)
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C.2 Simulation experiments of Section 3.5.2
C.2.1 Configurations evaluated

Table C-2. Thefour different generating HMM experiments evaluated. “ g Spacing”
isthe distance between the Gaussan centroids.

Experiment |1 2 3 4
Order 2 3 4 2
States 8 8 8 32

0 Spacing 15-3 15-3 15-3 12
Max links 656 5264 42128 34880
Ave links 134 398 1232 974
Sparseness | 204% 7.6% 2.9%  2.8%
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C.2.2 Results on training data

134

Table C-3. McNemar countsfor data configuration 1 (seeTable C-2). The models evaluated are given in the top row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39395 0 39068 327 39001 394 38501 894 | Generating
0 605 215 390 199 406 215 390
39283 0 38931 352 38388 895 | Extended/
0 717 269 448 328 389 ORED
39200 0 38472 728 FIT
0 800 244 556
38716 0 HMM 1
0 1284

Table C-4. The probability that observed differences between any two models ar ose by chance Calculated from the M cNemar counts of

Table C-3. Modelslikely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
1.86E-06 1.55E-15 0 Generating
0.001 0 Extended/ ORED
0 HT

134
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Table C-5. McNemar countsfor data configuration 2 (seeTable C-2). The models evaluated are given in the top row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39198 0 38768 430 38685 513 37727 1471 | Generating
0 802 378 424 238 564 297 505
39146 0 38594 552 37657 1489 Extended/
0 854 329 525 367 487 ORED
38923 0 37667 1256 FIT
0 1077 357 720
38024 0 HMM 1
0 1976

Table C-6. The probability that observed differences between any two models ar ose by chance Calculated from the M cNemar counts of

Table C-5. Modelslikely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
0.072785 0 0 Generating
7.53E-14 0 Extended/ ORED
0 HT

13t
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Table C-7. McNemar countsfor data configuration 3 (seeTable C-2). The models evaluated are given in the top row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39247 0 38939 308 38954 293 37710 1537 | Generating
0 753 336 417 210 543 264 489
39275 0 38894 381 37689 1586 | Extended/
0 725 270 455 285 440 ORED
39164 0 37716 1448 FIT
0 836 258 578
37974 0 HMM 1
0 2026

Table C-8. The probability that observed differences between any two models ar ose by chance Calculated from the M cNemar counts of

Table C-7. Modelslikely to differ in accuracy are shaded.

Extended/ORED FIT HMM1
0.287352 0.000256 0 Generating
1.62E-05 0 Extended/ORED
0 FIT
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Table C-9. McNemar countsfor data configuration 4 (seeTable C-2). The models evaluated are given in the top row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39894 0 39841 53 39831 63 39608 286 | Generating
0 106 60 46 40 66 35 71
39901 0 39815 86 39601 300 | Extended/
0 99 56 43 42 57 ORED
39871 0 39611 260 HT
0 129 32 97
39643 0 HMM 1
0 357

Table C-10. The probability that observed differences between any two models arose by chance Calculated from the M cNemar counts

of Table C-9. Models likely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
0.57246 0.03018 0 Generating
0.014948 0 Extended/ ORED
0 HT
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C.2.3 Results on testing data set
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Table C-11. McNemar countsfor data configuration 1 (seeTable C-2). The models evaluated are given in thetop row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39401 0 38987 414 38974 427 38460 941 | Generating
0 599 172 427 184 415 223 376
39159 0 38847 312 38288 871 | Extended/
0 841 311 530 395 446 ORED
39158 0 38436 722 FIT
0 842 247 595
38683 0 HMM 1
0 1317

Table C-12. The probability that observed differences between any two models arose by chance Calculated from the M cNemar counts

of Table C-11. Modelslikely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
0 0 0 Generating
1 0 Extended/ORED
0 HT
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Table C-13. McNemar countsfor data configuration 2 (seeTable C-2). The models evaluated are given in thetop row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39187 0 38273 914 38558 629 37667 1520 | Generating
0 813 275 538 206 607 295 518
38548 0 38059 489 37227 1321 | Extended/
0 1452 705 147 735 717 ORED
38764 0 37546 1218 HT
0 1236 416 820
37962 0 HMM 1
0 2038

Table C-14. The probability that observed differences between any two models arose by chance Calculated from the M cNemar counts

of Table C-13. Modéelslikely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
0 0 0 Generating
4.93E-10 0 Extended/ ORED
0 HT

13¢
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Table C-15. McNemar countsfor data configuration 3 (seeTable C-2). The models evaluated are given in thetop row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39240 0 37977 1263 38705 535 37689 1551 | Generating
0 760 197 563 167 593 258 502
38174 0 37805 369 36872 1302 | Extended/
0 1826 1067 759 1075 751 ORED
38872 0 37519 1353 FIT
0 1128 428 700
37947 0 HMM 1
0 2053

Table C-16. The probability that observed differences between any two models arose by chance Calculated from the M cNemar counts

of Table C-15. Modelslikely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
0 0 0 Generating
0 3.57E-06 Extended/ ORED
0 HT
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Table C-17. McNemar countsfor data configuration 4 (seeTable C-2). The models evaluated are given in thetop row and right-most
column. Thefour valuesat theintersedion of a gven pair of models represent thejoint classfication counts, asisalso illustrated and

explained in Table C-1.

Generating Extended/ ORED FIT HMM 1
39873 0 39567 306 39699 174 39510 363 | Generating
0 127 37 90 28 99 61 66
39604 0 39485 119 39299 305 | Extended/
0 396 242 154 272 124 ORED
39727 0 39433 294 HT
0 273 138 135
39571 0 HMM 1
0 429

Table C-18. The probability that observed differences between any two models arose by chance Calculated from the M cNemar counts

of Table C-17. Modéelslikely to differ in accuracy are shaded.

Extended/ ORED HT HMM 1
0 0 0 Generating
1.36E-10 0.182802 Extended/ ORED
8.9E-14 HT

141
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C.3 Automatic language recognition experiments

(Sections 4.6 and 4.7)

C.3.1 Configurations evaluated

Table C-19. Identities and descriptions of models used in automatic language
recognition experiments. All modelsindicated as extending another model are
trained viathe FIT algorithm, models 1, X2 and X3 aretrained diredly using the

Extended/ORED approach.
ID Context | Duration | Extends Description
order (C) | order (D)
1 1 1 - First-order ergodic

D2 1 2 1 to second-order duration modelling

D3 1 3 D2 to third-order duration modelling

F2 2 2 1 to seaond-order ergodic

C2 2 1 1 to second-order different state context
C2D2 2 2 C2 to second-order duration modelling
C2D3 2 3 C2D2 | tothird-order duration modelling

X2 2 2 - Seoond-order ergodic, Extended/ ORED

F3 3 3 F2 to third-order ergodic

C3 3 1 C2 to third-order different state context
C3D2 3 2 C3 to second-order duration modelling
C3D3 3 3 C3D2 | tothird-order duration modelling

X3 3 3 - Third-order ergodic, Extended/ ORED
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C.3.2 Results on training data
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Table C-20. The McNemar clasgfication counts on 5slanguage recgnition trialsusing 16state HMM s (seeTable C-19). The four values

at theintersedion of a gven pair of models represent the joint classfication counts, asin Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3
1810 0| 1646 164| 1632 178 1653 157| 1725 85 1700 110| 1700 110| 1711 99| 1692 118 1740 70| 1750 60| 1773 37| 1739 71 1
0 359 179 180f 202 157 194 165| 206 153 258 101 282 77 172 187| 251 108| 312 47 320 39 337 22| 272 87
1825 O 1735 90| 1727 98| 1709 116| 1740 85| 1734 91| 1695 130 1740 85| 1760 65| 1769 56| 1791 34| 1750 75| D2
0 344 99 245| 120 224 222 122 218 126 248 96 188 156| 203 141] 292 52 301 43 319 25| 261 83
1834 0| 1703 131| 1707 127| 1739 95| 1744 90| 1692 142 1749 85| 1764 70| 1771 63| 1801 33| 1758 76| D3
0 335 144 191] 224 111 219 116 238 97 191 144| 194 141| 288 47 299 36 309 26| 253 82
1847 0| 1731 116| 1764 83| 1765 82| 1720 127 1774 73| 1788 59| 1793 54| 1816 31| 1769 78] F2
0 322 200 122 194 128 217 105 163 159| 169 153| 264 58 277 45 294 28| 242 80
1931 O 1812 119| 1816 115 1764 167| 1795 136| 1873 58| 1873 58 1895 36| 1837 94| C2
0 238 146 92 166 72| 119 119| 148 90 179 59 197 41 215 23| 174 64
1958 0| 1884 74| 1765 193| 1828 130( 1900 58| 1911 47| 1927 31| 1854 104| C2D2
0 211 98 113| 118 93 115 96/ 152 59 159 52 183 28| 157 54
1982 0| 1775 207| 1853 129| 1905 77 1922 60| 1952 30 1874 108] C2D3
0 187 108 79 90 97 147 40 148 39 158 29[ 137 50
1883 0| 1766 117| 1806 77| 1822 61| 1842 41| 1816 67| X2
0 286| 177 109| 246 40| 248 38 268 18| 195 91
1943 0| 1870 73| 1886 57| 1909 34 1854 89] F3
0 226| 182 44 184 42 201 25| 157 69
2052 0| 2004 48| 2021 31| 1918 134] C3
0 117 66 51 89 28 93 24
2070 0| 2048 22| 1933 137] C3D2
0 99 62 37 78 21
2110 0| 1966 144]| C3D3
0 59 45 14
2011 O] X3
0 158
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Table C-21. The probability that observed differences between any two models arose by chance Calculated according to the M cNemar

test asapplied to the counts of Table C-20. Models likely to differ in accuracy are shaded.

D2 D3 F2 C2 C2D2 | C2D3 X2 F3 C3 C3D2 | C3D3 X3
0.45 0.24 0.05 <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 [ <0.01 | <0.01 1
0.56 0.15 <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | p2
0.47 <0.01 | <0.01 | <0.01 0.01 <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | D3
<0.01 | <0.01 | <0.01 0.04 <0.01 | <0.01 | <0.01 | <0.01 | <0.01 E2
0.11 <0.01 0.01 0.51 <0.01 | <0.01 | <0.01 | <0.01 | c2
0.08 <0.01 0.37 <0.01 | <0.01 | <0.01 | <0.01 |c2D2
<0.01 0.01 <0.01 | <0.01 | <0.01 0.07 |c2p3
<0.01 | <0.01 | <0.01 | <0.01 | <0.01 | x2
<0.01 | <0.01 | <0.01 | <0.01 F3
0.11 <0.01 0.01 C3
<0.01 | <0.01 |c3D2
<0.01 |c3Dp3
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Table C-22. The McNemar clasgfication counts on 45s language remgnition trialsusing 16state HMM s (seeTable C-19). The four

values at the intersection of a gven pair of models represent thejoint classfication counts, asin Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3
314 O 307 7 308 6 310 4 314 0 314 0 314 0 310 4 312 2 314 0 314 0 314 0 314 0] 1
0 25 12 13 13 12 13 12 20 5 22 3 22 3 13 12 23 2 24 1 25 0 25 0 22 3
319 0 315 4 314 5 317 2 318 1 319 0 310 9 318 1 319 0 319 0 319 0 319 0] D2
0 20 6 14 9 11 17 3 18 2 17 3 13 7 17 3 19 1 20 0 20 0 17 3
321 O 316 5 319 2 321 0 321 0 312 9 320 1 321 0 321 0 321 0 320 1] D3
0 18 7 11 15 3 15 3 15 3 1 7 15 3 17 1 18 0 18 0 16 2
323 0 321 2 323 0 323 0 317 6 322 1 323 0 323 0 323 0 323 0] F2
0 16 13 3 13 3 13 3 6 10 13 3 15 1 16 0 16 0 13 3
334 0 333 1 333 1 322 12 332 2 334 0 334 0 334 0 333 1] C2
05 3 2 3 2 1 4 3 2 4 1 50 50 3 2
336 0 335 1 323 13 334 2 336 0 336 0 336 0 335 1]C2D2
0 3 12 0 3 12 2 1 30 30 12
336 0 322 14 334 2 336 0 336 0 336 0 335 1]C2D3
0 3 1 2 12 2 1 30 30 12
323 0 322 1 323 0 323 0 323 0 323 0] X2
0 16 13 3 15 1 16 0 16 0 13 3
335 0 335 0 335 0 335 0 334 1] F3
0 4 31 4 0 4 0 2 2
338 0 338 0 338 0 336 2| C3
01 10 10 01
339 0 339 0 336 3] C3D2
00 00 00
339 0 336 3| C3D3
00 00
336 0] X3
0 3
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Table C-23. The probability that observed differences between any two models arose by chance Calculated according to the M cNemar

test asapplied to the counts of Table C-22. Models likely to differ in accuracy are shaded.

D2 D3 F2 Cc2 C2D2 |C2D3 (X2 F3 C3 C3D2 |C3D3 (X3
0.36 0.17 0.05| <0.01| <0.01f <0.01 0.05| <0.01] <0.01f <0.01] <0.01| <0.01] 1
0.75 0.42| <0.01| <0.01f <0.01 0.52| <0.01f <0.01] <0.01f <0.01] <0.01} D2
0.77] <0.01| <0.01f <0.01 0.82| <0.01f <0.01] <0.01f <0.01] <0.01} D3
0.01) <0.01f <0.01 1.00| <0.01f <0.01] <0.01] <0.01| <0.01}] F2
0.63 0.63] <0.01 1.00 0.13 0.06 0.06 0.63] C2
1.00{ <0.01 1.00 0.50 0.25 0.25 1.00] C2D2
<0.01 1.00 0.50 0.25 0.25 1.00] C2D3
<0.01] <0.01f <0.01] <0.01f <0.01] X2
0.25 0.13 0.13 1.00] F3
1.00 1.00 0.50] C3
1.00 0.25] C3D2
0.25] C3D3
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C.3.3Testing set results

Table C-24. The McNemar clasgfication counts on 5slanguage recognition trialsusing 16state HMM s (seeTable C-19). The four values

at theintersedion of a gven pair of models represent the joint classfication counts, asin Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3
171 0| 156 15| 156 15| 152 19| 156 15 149 22 149 22| 160 11| 154 17| 150 21 143 28 142 29| 153 18 1
0 76 40 36 43 33 36 40 31 45 44 32 43 33 27 49 43 33 40 36 45 31 47 29 44 32
196 0| 185 11| 172 24| 167 29 170 26 165 31| 171 25| 175 21| 166 30 164 32 164 32| 169 27| D2
0 51 14 37 16 35 20 31 23 28 27 24 16 35 22 29 24 27 24 27 25 26 28 23
199 0| 177 22| 166 33 168 31 166 33| 176 23| 180 19| 170 29 167 32 165 34| 171 28| D3
0 48 11 37 21 27 25 23 26 22 11 37 17 31 20 28 21 27 24 24 26 22
188 0| 159 29 164 24 161 27| 167 21| 176 12| 158 30 158 30 156 32| 163 25| F2
0 59 28 31 29 30 31 28 20 39 21 38 32 27 30 29 33 26 34 25
187 0 165 22 163 24| 156 31| 160 27| 163 24 156 31 153 34| 160 27| c2
0 60 28 32 29 31 31 29 37 23 27 33 32 28 36 24 37 23
193 0 178 15| 159 34| 169 24| 162 31 161 32 160 33| 166 27| C2D2
0 54 14 40 28 26 28 26 28 26 27 27 29 25 31 23
192 0| 159 33| 169 23| 161 31 159 33 162 30| 164 28| Cc2D3
0 55 28 27 28 27 29 26 29 26 27 28 33 22
187 0| 169 18| 160 27 158 29 156 31| 167 20| X2
0 60 28 32 30 30 30 30 33 27 30 30
197 0| 167 30 161 36 159 38| 171 26| F3
0 50 23 27 27 23 30 20 26 24
190 O 168 22 164 26| 161 29| C3
0 57 20 37 25 32 36 21
188 0 175 13| 155 33| C3D2
0 59 14 45 42 17
189 0| 155 34| C3D3
0 58 42 16
197 0] X3
0 50
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Table C-25. The probability that observed differences between any two models arose by chance Calculated according to the M cNemar

test asapplied to the counts of Table C-24. Models likely to differ in accuracy are shaded.

D2 D3 F2 Cc2 C2D2 | C2D3 X2 F3 C3 C3D2 | C3D3 X3
<0.01 | <0.01 | 0.03 0.03 0.01 0.01 0.01 | <0.01 | 0.02 0.06 0.05 | <0.01 1
0.69 0.27 0.25 0.78 0.69 0.21 1.00 | 0.50 0.35 0.43 1.00 D2
0.08 0.13 0.50 0.43 0.06 0.87 0.25 0.17 0.24 | 0.89 D3
1.00 0.58 0.69 1.00 0.16 0.90 0.90 1.00 | 0.30 E2
0.48 0.58 0.90 0.26 0.78 1.00 0.90 | 0.26 Cc2
1.00 | 0.53 0.68 0.79 0.60 0.70 | 0.69 |c2Dp2
0.61 0.58 0.90 0.70 0.79 0.61 |c2p3
0.18 0.79 1.00 0.90 | 0.20 X2
0.41 0.31 0.40 | 0.89 F3
0.88 1.00 | 0.46 C3
1.00 0.36 |c3D2
042 |c3D3
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Table C-26. The McNemar clasgfication counts on the NI ST’ 95 45s language recgnition trialsusing 16state HMM s (seeTable C-19).

Thefour valuesat theintersection of a gven pair of models represent the joint classfication counts, asin Table C-1.

1 D2 D3 F2 C2 C2D2 C2D3 X2 F3 C3 C3D2 C3D3 X3
32 0| 31 1) 32 0] 30 2| 31 1 31 1 31 113 1|32 0f 31 1 30 2 31 1] 31 1 1
0o 7 5 2 4 3 5 2 5 2 5 2 6 1 3 4 6 1 4 3 5 2 6 1 4 3
36 O0f 35 1| 3 1| 34 2 34 2 34 21 3 2|3 1| 34 2 33 3 34 21 3 1 D2
0 3 1 2 0 3 2 1 2 1 3 0 0 3 3 0 1 2 2 1 3 0 0 3
36 0| 34 2| 3 1 34 2 34 213 3| 36 0] 3 1 34 2 35 1] 3 1 D3
0 3 1 2 1 2 2 1 3 0 1 2 2 1 0 3 1 2 2 1 0 3
35 0 33 2 34 1 34 1138 2| 34 1 33 2 33 2 33 21 34 1 F2
0 4 3 1 2 2 3 1 1 3 4 0 2 2 2 2 4 0 1 3
36 0 34 2 34 21 32 4] 36 0] 3 1 34 2 36 0] 3 2| cC2
0 3 2 1 3 0 2 1 2 1 0 3 1 2 1 2 1 2
36 0 36 0| 32 4| 3 1] 33 3 33 3 34 2| 33 3]cC2D2
0 3 1 2 2 1 3 0 2 1 2 1 3 0 2 1
37 0] 32 5] 36 1| 33 4 34 3 35 2| 33 4]cC2D3
0 2 2 0 2 0 2 0 1 1 2 0 2 0
34 0 33 1 32 2 31 3 32 21 33 1 X2
0 5 5 0 3 2 4 1 5 0 2 3
38 0| 35 3 35 3 37 1] 35 3 F3
0 1 0 1 0 1 0 1 0 1
35 0 34 1 35 0] 34 1] cC3
0 4 1 3 2 2 1 3
35 0 35 0] 33 2]C3D2
0 4 2 2 2 2
37 0| 34 3]|C3D3
0 2 1 1
35 0] X3
0 4
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Table C-27. The probability that observed differences between any two models arose by chance Calculated according to the M cNemar

test asapplied to the countsof Table C-26. Model F3 differ significantly (97% confidence) from model 1.

D2 D3 F2 C2 C2D2 | C2D3 X2 F3 C3 C3D2 | C3D3 X3
0.22 0.13 0.45 0.22 0.22 0.13 0.63 0.03 0.38 0.45 0.13 0.38 1
1.00 1.00 1.00 1.00 1.00 | 0.50 0.63 1.00 1.00 1.00 1.00 D2
1.00 1.00 1.00 1.00 | 0.63 0.50 1.00 1.00 1.00 1.00 D3
1.00 1.00 0.63 1.00 0.38 1.00 1.00 0.69 1.00 F2
1.00 1.00 | 0.69 0.50 1.00 1.00 1.00 1.00 Cc2
1.00 | 0.69 0.63 1.00 1.00 1.00 1.00 jC2D2
0.45 1.00 | 0.69 0.63 1.00 | 0.69 |C2D3
0.22 1 1 0.45 1 X2
0.25 0.25 1 0.25 F3
1 0.5 1 C3
0.5 1 C3D2
0.63 |C3D3
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