
Computer Speech and Language (1998) 12, 23–39

Efficient training of high-order hidden Markov
models using first-order representations

J. A. du Preez
University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Abstract

We detail an algorithm (ORED) that transforms any higher-order
hidden Markov model (HMM) to an equivalent first-order HMM.
This makes it possible to process higher-order HMMs with standard
techniques applicable to first-order models. Based on this equivalence,
a fast incremental algorithm (FIT) is developed for training higher-
order HMMs from lower-order models, thereby avoiding the training
of redundant parameters. We also show that the FIT algorithm results
in much faster training and better generalization compared to
conventional high-order HMM approaches. This makes training of
high-order HMMs practical for many applications.

 1998 Academic Press Limited

1. Introduction

Due to their high computational complexity, higher-order hidden Markov models
(HMMs) have found little application in existing speech processing systems. For
example, in an ergodic Rth-order HMM with N states, there are NR transition prob-
abilities. This large number of parameters also requires a very large database for
adequate training, which compounds this problem. In addition to these difficulties,
specialized extended algorithms are necessary for each specific order of HMM.

In previous work, both the Viterbi (He, 1988) and the Baum-Welch (Kriouile, Mari
& Haton, 1990) algorithms have been extended to second-order models. The enhanced
duration modelling of second-order HMMs, compared to first-order models, improves
the accuracy obtained in digit and letter recognition experiments (Mari & Haton, 1994;
Mari, Fohr & Junqua, 1996; Mari, Haton & Kriouile, 1997). Mari & Haton (1994)
and Mari et al. (1997) note the equivalence between second-order and first-order
HMMs; however, they do not discuss higher-order models, or provide algorithms for
obtaining equivalent models. They conclude that the dramatic expansion in the number
of states does not warrant the use of such a technique and instead use extended second-
order Viterbi and Baum-Welch algorithms. Using a sparse representation they avoid

0885–2308/98/010023+17 $25.00/0/la970037  1998 Academic Press Limited

24 J. A. du Preez

calculations involving redundant transition probabilities. We refer to these algorithms
as the extended approach.

In Section 3 we detail an algorithm that transforms higher-order HMMs to fully
equivalent first-order versions (Appendix A provides a proof of this). This is highly
advantageous as standard first-order HMM training and processing algorithms can be
used to process such models. We also use a sparse representation when processing the
equivalent first-order models, thereby achieving the same computational efficiency as
in the extended approach. To further enhance training efficiency, we also detail a new
fast incremental training (FIT) algorithm in Section 4. Compared to prior work, FIT
substantially reduces computational requirements. Section 5 applies this work to a
limited automatic language recognition (ALR) task.

2. Definitions, notation and some background

XL
1={x1, x2, · · · xl, · · · xL} is an observation sequence or string of length L, which must

be matched to the HMM. An HMM M is defined as a set of N conventional emitting
states, as well as an initial and terminal state that are so-called non-emitting or null
states, yielding a total of N+2 states. The symbols S and Q are variables taking on
the index value of the state under consideration. In normal HMMs this index value is
a scalar, such as Q=i (single indexed). In the transformed models developed in Section
3, composite values such as Q=(i,j) (composite indexed) are used for intermediate
indexing. This composite indexing is used to track state histories. Subscripts are used
to specify the time at which a certain state occurs. An expression such as Sl=j will
indicate the occurrence of the jth state at time l. A sequence of states occurring from
time m up to time n is denoted by S n

m. Time indexes lower than 1 or higher than L are
not associated with physical time as is measured by the indexes of the observation
string, but rather indicate null states preceding or following the input string.

States are coupled by transitions, each with probabilities describing its likelihood of
occurring. The initial state will have no transitions entering it and the terminal state
will have no transitions leaving it. Transition probabilities are indicated by the symbol
a, with subscripts to index the states involved. To distinguish between the transition
probabilities of the original higher-order models and its transformed equivalents, a
prime (′) symbol is used for the former. For example, a′ijk is the symbol used in the
original second-order HMM to indicate the probability of moving from state j to state
k, given that the preceding state was i.

Each emitting state has an associated probability density function (pdf.) f(x|S,M)
that quantifies the similarity between a feature vector x and the state. The ith pdf. is
identified as fi in the diagrams. The null states, indicated in state diagrams by dashed
circles, do not have pdf.s associated with them. Transitions to them do not consume a
time-step; this makes them useful tying points for groups of states, enabling the use of
single initial and termination states whilst maintaining the functionality of the multiple
case. This simplifies the representation by making the customary inclusion of extra
parameters to indicate multiple initial and termination states unnecessary. In the
following discussion, extensive use is made of states that share pdf.s (Bahl, Jelinek &
Mercer, 1983; Lee, 1989). These are referred to as tied pdf.s.

The match between XL
1 and M is quantified by the likelihood f(XL

1 |M). To make its
calculation tractable, certain simplifying assumptions are necessary:

25Efficient training of high-order hidden Markov models

a34a23

a22

a12

a11

a01

a33

a13

0 1
f1

2
f2

3
f3

4

Figure 1. Base first-order HMM.

Assumption 1

The observation independence assumption states that

f(xl|Xl−1
1 , Ql

0, M)=f(xl |Ql, M). (1)

This means that the likelihood of the lth feature vector is dependent only on the
current state and is therefore otherwise unaffected by previous states and feature vectors.
This assumption is not affected by the order of the HMM.

Assumption 2

By definition, an HMM includes the Markov order assumption

P(Ql |Ql−1
0 , Xl−1

1 , M)=P(Ql |Ql−1
l−R, M), (2)

where R is known as the order of the HMM.
This assumption states that any states or features, other than the immediately

preceding R states, do not affect the probability of occurrence of the next state.
The vast majority of applications use R=1, resulting in a first-order HMM (HMM1)

of which an example is shown in Figure 1. The probability of jumping to a specific
state at the next time step is dependent only on the state that is occupied at the current
time. Therefore, only a single transition probability occurs on the link between any
two states. These probabilities are often presented as a matrix, and algorithms used to
calculate the required likelihood only need to keep track of the behaviour of states one
time step earlier (Poritz, 1988).

Since a transition to a next state is dependent only on the current state, more subtle
restrictions on the allowable combinations of states are not effectively modelled (He,
1988). In addition, the self-loops on the emitting states are poor duration models in
most practical applications (Levinson, 1986). The richer modelling capability resulting
from increasing the order of the model can mitigate these difficulties (He, 1988; Mari

26 J. A. du Preez

a'134

a'234

a'334

a'123

a'223

a'122

a'222
a'012

a'112

a'011

a'111

a'01

a'133

a'333

a'013

a'113

0 1
f1

2
f2

3
f3

4

a'233

Figure 2. Second-order version of the HMM in Fig. 1.

et al., 1997). In Figure 2 the second-order version (HMM2) of the previous example is
given. More precise modelling is now possible, but it comes at the cost of an increased
number of transition probabilities. Note that, unlike the HMM1, both the previous
and the current state determine the correct choice amongst the number of alternative
probabilities on a given transition. Typically these probabilities are represented in a
cubic structure, and the calculation of f(XL

1 |M) requires specialized algorithms to track
the longer history of states (Kriouile et al., 1990).

3. Transforming a Rth-order to an equivalent first-order HMM

In this discussion, the Rth-order HMM is referred to as MR, while the equivalent
R−1th-order version is MR−1. States in MR are denoted by Q while the variable S is
used for those in MR−1. We assume that MR has N emitting states, augmented by initial
(Q=0) and terminal (Q=N+1) null states. States Q are denoted by single indexes
whereas S use (intermediate) composite indexing.

3.1. Order reducing (ORED) algorithm

(1) Create the states of MR−1:
(a) Create the initial null state S=0.
(b) For every state Q=i, i=0· · ·N with a transition leading to state Q=j, j=

1· · ·N+1, create a new state S=(i, j).
(c) If the terminal state Q=N+1 has multiple transitions entering it, create a

new terminal null state S=N+2.
(2) Allocate pdf.s:

All states S=(j, k) shares, via tied pdf.s, the same pdf. as state Q=k. That is,
they are all either null states, or f(x |S=(j, k),MR−1)=f(x |Q=k, MR).

(3) Allocate transitions and their probabilities:
(a) Create a transition between state S=0 and each of the created states S=(0,

i). Associate the probability a0(0,i)=a′0i with this transition.
(b) Let i1 · · · im represent any sequence of indexes with length mΖR−2. Create

a transition between every existing state S=(i, j) and S=(j, k). The associated
transition probabilities are a(i1,i2)(i2,i3) · · · (im,i)(i,j)(j,k)=a′i1 · · · imijk.

(c) If a new terminal state S=N+2 has been created, create a unit probability
transition a(i,N+1)(N+2)=1 between every state S=(i,N+1) and S=N+2.

27Efficient training of high-order hidden Markov models

a'2234

a'1334

a'2334

a'3334

a'0133

a'1133

a'1233

a'2233
a'0123

a'1123

a'1223

a2223

a'0122

a'1122

a'2222

a'012

a'0112

a'1112

a'011

a'1111

a'01

a'1333

a'3333

a'0134

a'1134

a'1234

a'013

a'0113

a'1113

0 1
f1

2
f2

3
f3

4

a'1222a'0111 a'2333

Figure 3. Third-order version of the HMM in Fig. 1.

(4) Iterate:
(a) Rename all the composite state indexes to unique single indexes, and modify

the indexes in the transition probabilities accordingly. The resulting model is
the R−1th-order equivalent of the original Rth-order model.

(b) All of the above steps can be repeated until all transition probabilities are
subscripted by only two state indexes. By definition, this is a first-order
model, shown in Appendix A to be equivalent to the original higher-order
model.

3.2. Notes on the ORED algorithm

Steps 1(a) and (c) ensure that the model has unique initial and terminal states. Step
1(b) creates the necessary states to ensure that an extra step of state history is made
explicit in the new model. Since the pdf. associated with each state is unaffected by the
order of the model, step 2 uses tied pdf.s to ensure that the status quo is maintained
when the new model is trained. The transitions leaving directly from the initial state
necessarily is first-order and is handled separately in step 3(a). Step 3(b) inserts the
higher-order transition probabilities. When the base model has order higher than two,
there are multiple probabilities associated with each transition. The sequence i1· · ·im,
mΖR−2 is used to enumerate those probabilities. Step 3(c) ensures a single termination
state, thereby keeping the representation cleaner. The superfluous null states leading to
the termination state S=N+2 may (optionally) be eliminated. Recursion is used in
step 4 for further decreasing of the order. Step 4(a) does the necessary renaming to the
notation assumed by step 1. The use of single state indexes in the base model keeps
the formulation simpler. Another attractive alternative would be to use composite
indexes indicating the applicable history of states according to the order of the model.
Step 4(b) is the actual recursion.

3.3. Example

In this section the ORED algorithm is applied to the third-order model of Figure 3.
Figure 4 shows the resulting second-order equivalent to this model. The composite

28 J. A. du Preez

0 3,41,2
f2

1,1
f1

1,3
f3

0,1
f1

2,3
f3

2,2
f2

3,3
f3

 a(1,2)(2,2)(2,3) = a'1223

 a(0,1)(1,2)(2,3) = a'0123
 a(1,1)(1,2)(2,3) = a'1123

 a(1,2)(2,3)(3,4) = a'1234
 a(2,2)(2,3)(3,4) = a' 2234

 a(0,1)(1,3)(3,4) = a'0134

 a (0,1)(1,2) = a'012

 a 0 (0,1) = a'01

 a
(0,1)(1,3)(3,3) = a'0133

 a (1,1)(1,3)(3,3) = a'1133 a (0,1)(1
,1)(1

,3)
= a' 011

3

 a (1,1)(1
,1)(1

,3)
= a' 111

3

 a(0,1)(1,1) = a' 011

 a(0,1)(1,2)(2,2) = a'0122
 a(1,1)(1,2)(2,2) = a'1122

 a(1,2)(2,3)(3,3) = a'1223
 a(2,2)(2,3)(3,3) = a'2223

 a(1,1)(1,3)(3,4) = a'1134
 a(0,1)(1,3) = a'013

 a(0,1)(1,1)(1,1) = a'0111
 a(1,1)(1,1)(1,1) = a'1111

 a(2,3)(3,3)(3,4) = a' 2334

 a(1,3)(3,3)(3,4) = a' 1334

 a(3,3)(3,3)(3,4) = a' 3334

 a(1,2)(2,2)(2,2) = a'1222 a(2,3)(3,3)(3,3) = a'2333
 a(3,3)(3,3)(3,3) = a' 3333

 a(0,1)(1,1)(1,2) = a'0112
 a(1,1)(1,1)(1,2) = a'1112

 a(2,2)(2,2)(2,2) = a'2222

 a(2,2)(2,2)(2,3) = a'2223

Figure 4. The second-order equivalent of the third-order HMM in Fig. 3,
using the intermediate composite state indexing scheme. If the first index is
dropped in cases where a has three and a′ has four indexes, thereby leaving
only single probabilities on each transition, this would also be the first-order
equivalent of Fig. 2.

a'3334

a'0133

a'1133

a'2233

a'0123

a'2334

a' 12
22

a'1122 a'1223

a'2222

a'012

a' 11
13

a'1112
a' 01

11

a'01

a'1333

a' 23
33

a'2223

a'1134

a'1234
0

1
f1

10
f3

3
f3

1816
4
f2

a'0112

a' 01
1

3
f1

7
f2

14
f3

12
f3

2
f1

5
f2

6
f2

11
f3

13
f3

17

158
f3

a'3333a'1111
a'1334

a'1233 a'2234a'0122 a'1123

a'013

a'0134

a'0113

Figure 5. The first-order equivalent of the HMM in Fig. 3. The states of the
original model in Fig. 3 correspond to states here with the same pdf. (fi).

state indexes have been retained for illustrative purposes. In Figure 5 the first-order
equivalent of this model is shown. As noted from these diagrams, the resulting models
have a rich and aesthetically pleasing structure. (Other configurations also result in
elegant structures and the reader is invited to sketch the first-order equivalents of small

29Efficient training of high-order hidden Markov models

second and third-order ergodic models.) Also note that, whereas the longest path
without self-loops in Figure 1 occupies three physical time steps, it is six time steps for
the second-order model and nine time steps for the third-order model. The shortest
paths, of course, do not differ from the original first-order model. Explicit modelling
of paths of different lengths results in more precise duration modelling.

4. Fast incremental training (FIT) of higher-order HMMs

As noted in Section 1, Kriouile et al. (1990) developed enhanced training algorithms
for second-order HMMs. Using ORED, the HMM can also be trained by using
standard first-order optimization algorithms. Due to the large number of parameters
in higher-order models, they are plagued by two problems. These are: computationally
very expensive training, and poor generalization to previously unseen data. To address
this, we develop a fast training technique in the following section. We show in Sections
4.4 and 5 that the FIT algorithm, while directly addressing computational issues, also
shows beneficial generalization behaviour. Interpolation and other techniques from
language modelling (Jelinek, Mercer & Roukos, 1992), although not addressed here,
are expected to provide additional robustness against insufficient amounts of training
data.

4.1. Basis for Fast Incremental Training

Experience shows that in many practical situations involving non-trivial models, a large
percentage of transitions disappear during training. For many problems, considerable
training effort is therefore expended on estimating parameters that will eventually
become zero. From Figures 1, 2 and 3, we see that a single transition probability in
the R−1th-order model is simply being replaced by a set of probabilities in the Rth-
order model. We now investigate the target transition probabilities of a first-order
model (such as M1 in Fig. 1) when it is trained with data that have been generated by
the corresponding second-order model (such as M2 in Fig. 2) (see Appendix B for a
more formal analysis). Training algorithms, such as Baum-Welch re-estimation, estimate
transition probabilities by counting the expected number of transitions on each of the
links leaving from a state (Poritz, 1988). Consider a transition in M2 from state Ql−1=
j to Ql=k occurring with non-zero probability. If M1 was used in the place of M2, this
same transition will be observed with a potentially different, but still non-zero probability.
This suggests that a first-order model can be trained to determine which sets of second-
order transition probabilities are viable. Redundant second-order probabilities can then
be avoided during subsequent training.

4.2. The FIT algorithm for the training of fixed-order HMMs

(1) Set up a first-order HMM for the application at hand.
(2) Run the training algorithm on the first-order model. Non-viable transitions

should disappear.
(3) Convert the optimized first-order model to a second-order model. Let Aj be the

set of states that directly precedes state S=j. Replace the probability ajk that
joins the states S=j and S=k by the multiple probabilities aijk where ivAj. Initialize
these probabilities with the first-order values, aijk=ajk, ivAj. This conversion will

30 J. A. du Preez

a' 0134

a'1134

a'1234

a'2234

a'1123

a'1223

a'2223

a'0122

a'1122

a'1222

a'2222
a'012

a' 0112

a'011

a'01

a'013

a'0113

0 1
f1

2
f2

3
f3

4

Figure 6. Model used for generating simulated data.

increase the number of transition parameters. If any transitions disappeared while
training the first-order model, they will not propagate to the second-order model,
thus avoiding the training of this larger number of second-order transition
probabilities. To benefit from this a sparse transition matrix representation must
be used.

(4) Use the ORED algorithm to create a first-order equivalent of this model. Initially
this model will match an unknown observation string with the same likelihood
as the original (trained) first-order model.

(5) Now, by repeating the algorithm from step 2, train this model. This will refine
the transition probabilities to their required higher-order values. As was previously
mentioned, an Rth-order model simply extends the memory of an R−1th-order
model by one time step. Therefore this process can be repeated to train even
higher order models, bearing in mind that deficiencies might arise from inadequate
quantities of training data.

4.3. Example of training via the ORED and FIT algorithms

This section illustrates the above by recovering a high-order HMM from simulated
data. This is done by using both the extended/ORED algorithm as well as the FIT
algorithm. The model of Figure 6 was used to generate simulated data. This model
was determined by removing some of the transition probabilities from the model of
Figure 3. These removals were chosen to show specific effects at different levels
(iterations) of the FIT algorithm. Firstly, all transitions involving a transition of state
S=3 to itself were removed (a33 in Fig. 1). This is a first-order effect that eliminates
four probabilities in the second-order model, and ultimately eliminates nine probabilities
in the third-order model (all a′ in Figs 2 and 3 with two or more 3’s in the subscript).
Next all transitions from state S=1 to itself, given that the previous state was also S=
1, have also been removed (a ′111 in Fig. 2). This is a second-order effect that ultimately
eliminates four probabilities in the third-order model (all a′ in Fig. 3 with three or
more 1’s in the subscript). Finally, a third-order transition probability, namely a′0123, has
also been removed. The remaining probabilities were fixed at arbitrarily chosen values.
Two-dimensional data are assumed. The three diagonal Gaussian pdf.s of the emitting
states were centred on the points (0, 0), (0, 1) and (1, 1). In two sub-experiments the
standard deviations used in the pdf.s were varied. In the first, a small standard deviation

31Efficient training of high-order hidden Markov models

f2
f1 f2 f3

(a) f1 f2 f3(b)

f1 f2

f3

f2 f3

f2

f3

f3

f1

f2 f3f1
(c)

Figure 7. Model structures after (a) first, (b) second and (c) third-order stages
of the FIT algorithm.

T I. Mean deviation between trained and actual parameters

Extended/ORED
 r training Incremental training

0·20 0·015 0·015
0·33 0·307 0·017

(r=0·2) produced little overlap between the pdf.s. The other experiment used a wider
standard deviation, namely r=0·33, giving considerable overlap. For each of these
sub-experiments 1000 different strings, with randomly varying lengths as dictated by
the model, of simulated feature vectors were drawn. Extended/ORED training was
based on the structure of Figure 5 as initial configuration, whereas the incremental
approach was initially based on Figure 1. The initial transition probabilities for the
self-loops were fixed at 0·8 and the remainder was equally divided between the other
transitions. Initial values for the pdf.s were determined from vector quantization (Gray,
1984).

Figure 7 shows the model topologies as they evolved from stage to stage in the
incremental training process. Both sets of standard deviations yielded identical model
structures. Compare this figure to those of Figures 3, 4 and 5. The transitions that
disappear during each stage of the incremental training correspond exactly to the model
used to generate the data with. Due to the presence of local optima this will not
necessarily be so in all cases. Two different quantities were calculated with which to
judge the finer differences between the models. The transitions and mean values in the
models are roughly of comparable magnitude. The first quantity used measures the
average difference between these trained parameters and their actual underlying values.
Using the narrow pdf.s (r=0·2) both the ORED and FIT approaches converged to
the correct structure with identical parameters. As can be seen from Table I, the trained
parameters closely matched the true underlying values. With the wider pdf.s (r=0·33),
the extended/ORED approach converged to a sub-optimal structure, clearly reflected
in the rather large deviation from the true values. In spite of this, the total likelihood

32 J. A. du Preez

T II. Total likelihood log[f(XL
1 |M)] after training

Incremental training order (FIT)
Extended/

 r ORED 1 2 3 4 5

0·20 −503·74 −853·28 −649·17 −503·74 −501·46 −501·35
0·33 −5703·66 −5944·01 −5700·87 −5611·79 −5609·52 −5609·25

reported in Table II is reasonable and compares with the (correct) second-order
approximation of the incremental approach. This is the typical behaviour of convergence
towards a local optimum, showing that the solution from the FIT algorithm may or
may not coincide with that of the extended/ORED approach. It is interesting to note
how, in the incremental approach, the likelihood improves rapidly with increasing order
until the proper order is reached. Thereafter only marginal improvement, which can
be attributed to specialization on the training data, takes place.

4.4. Investigating the convergence of the FIT algorithm

As seen in the previous section, the FIT algorithm will not necessarily converge to the
same values as the extended/ORED approach. Underlying training algorithms, such as
the Baum-Welch algorithm, only guarantee convergence to a local optimum (Poritz,
1988). The FIT algorithm starts out with a different number of, and differently valued,
initial parameters from that of the extended/ORED approach. It may therefore converge
to a different local optimum. To investigate the quality of the FIT solution, carefully
controlled experiments are needed. In particular, it is desirable to use data obtained
from a hidden Markov source with known order and transition probabilities. Clearly,
this is not possible with speech data, so synthetic data was used. This allows precise
control over the Markov order, access to the underlying transition probabilities and
control of the difficulty of the problem. For each synthetic experiment, two HMMs of
a given order and complexity were generated. The extended/ORED and FIT algorithms
were tasked with inferring the parameters of these models using data that was generated
by them. Test data generated by the two models is then classified according to which
model generated it. Access to the underlying HMMs allows testing against the actual
generating models (not the FIT or ORED estimated models), and therefore allows an
estimate of the optimal classification performance achievable. This is useful as it can
identify specialization problems and determine expected performance bounds. The
variety of conditions tested are summarized in Table III. The HMM structures used
were generated by pruning links at random from higher-order ergodic HMMs and
initializing the remainder in a random fashion. The means of the diagonal Gaussian
pdf.s associated with each state were randomly positioned on a square two-dimensional
plane. All the pdf.s shared a constant variance on both dimensions. The spacing between
each pdf. and its closest neighbour was controlled as specified in Table III. For each
of these conditions, 20 different models were investigated.

We first consider the compactness of models derived via the ORED and FIT
algorithms as this indicates the computational complexity of the training procedure.
In Table IV the excess number of non-zero transition probabilities (expressed as a

33Efficient training of high-order hidden Markov models

T III. The four different generating HMM conditions evaluated.
“r Spacing” is the distance between each Gaussian centroid and its

closest neighbour

Configuration
number 1 2 3 4

Order (R) 2 3 4 2
States (N) 8 8 8 32
r Spacing 1·5–3·0 1·5–3·0 1·5–3·0 1·0–2·0
Max links 656 5264 42128 34880
Ave links 134 398 1232 974
Sparseness (%) 20·4 7·6 2·9 2·8

T IV. Excess transitions in ORED and FIT trained HMMs
relative to that of the true underlying model. R is the order and

N is the number of states

R,N 2,8 3,8 4,8 2,32

ORED (%) 109 453 1820 1203
FIT (%) 12 15 15 338

T V. Error increase when classifying independent testing data with
ORED, FIT and first-order trained HMMs, compared to that of the

true underlying model

Training set Testing set

ORED FIT HMM1 ORED FIT HMM1
R,N (%) (%) (%) (%) (%) (%)

2,8 19 32 112 40 41 120
3,8 6 34 146 79 52 151
4,8 −4 11 169 140 48 170
2,32 −7 22 237 212 115 238

percentage relative to the actual number of non-zero transition probabilities) resulting
from these algorithms when compared to the true underlying model is shown. The sizes
of the eight state models, which have fairly well separated Gaussian centroids, are well
approximated by the FIT algorithm, irrespective of the sparseness factor. This, however,
does not hold for the extended/ORED approach, which rapidly escalates to computationally
uneconomical sizes (Table IV). We observe that the extended/ORED approach, although
doing very well on the training data (even better than the true generating model), runs
into serious trouble on the independent testing data, especially with the large, difficult
models as shown in Table V. Correlating these results with that of Table IV indicates
that the extended/ORED algorithm is likely to over-specialize. A McNemar test (Gillick
& Cox, 1989) with a 95% confidence level shows that in the testing set only the ORED

34 J. A. du Preez

T VI. Comparison of 16-state ergodic HMMs trained via ORED and
FIT. Accuracy measured on independent NIST’95 LID set. First-order accuracy

is 82·1%

Ratio FIT/ORED Accuracy (NIST’95 LID)

CPU MEM Links ORED FIT
Order (%) (%) (%) (%) (%)

2 94 69 70 87·2 89·7
3 7 13 5 89·7 97·4

vs. FIT results on the data from the (2,8) model, and the ORED vs. HMM1 results
on the (2,32) HMM, do not differ significantly. The small number of parameters in the
former case possibly forced the extended/ORED model to generalize. The latter is
interesting as it indicates that overspecialization may rob a large higher-order HMM
of its advantages over a first-order model; FIT models do not seem to be so susceptible
to this.

5. Automatic language recognition experiments

We are currently investigating the use of high-order ergodic HMMs for automatic
language recognition (ALR). In the following experiment we used roughly 100 minutes
each of free English and Hindi speech (from the OGI-TS database) as training data.
Silence sections in each recording were removed automatically, after which the energy
was normalized. After pre-emphasis, LPC-cepstra and delta-cepstra were calculated at
16 ms intervals. This was followed by cepstral mean subtraction. Both languages were
modelled with sixteen-state first, second and third-order ergodic HMMs. To provide
robustness, each set of HMMs utilized a shared set of diagonal Gaussian pdf.s, thereby
forcing the system to focus on phonotactics and not so much on acoustic-phonetics
(Du Preez, 1993). Training followed both the ORED and FIT approaches.

Table VI summarizes the results. The memory ratios are based on the space required
by both the Viterbi-paths matrix, as well as a sparse representation of the transition
probabilities themselves. For the CPU calculation, only the transition probability
component is considered. For models with many transitions and relatively few pdf.s,
this dominates the CPU usage. Clearly the FIT approach results in more compact
models. The classification accuracies confirm the results of the simulations of the
previous section. However, due to the rather small test set (39 classifications—NIST’95
whole story specification), a McNemar test could only show the third-order FIT model
to be better than the first-order HMM on a 90% significance level. No significant
differences were detected between the ORED and FIT trained models.

6. Conclusion

The ORED algorithm presented in this paper allows any order HMM to be represented
by an equivalent first-order model. This implies that all existing algorithms used for
processing first-order HMMs can be directly applied to higher-order HMMs. This
alone should encourage more researchers to experiment with the enhanced capabilities

35Efficient training of high-order hidden Markov models

of such models. Such first-order equivalents also simplify the interpretation of higher-
order HMMs. The better control over allowable state sequences and improved duration
modelling are clearly illustrated.

An efficient algorithm for training higher-order HMMs, based on the incremental
training of HMMs of successive order (the FIT algorithm), is also given. It is shown
to generalize better on previously unseen data. Its efficiency is verified on a language
recognition task and demonstrates a practical training algorithm for higher-order
HMMs.

The author wishes to thank the Oregon Graduate Institute for making their Multi-Language
Telephone Speech (OGI-TS) database available. Etienne Barnard, Niko Brümmer and David
Weber provided valuable help with their constructive comments made during the writing of this
article. The Defence Research Development Council of South Africa and the Telkom-DataFusion
Centre of Excellence is thanked for providing financial assistance.

References

Bahl, L. R., Jelinek, F. & Mercer, R. L. (1983). A maximum likelihood approach to continuous speech
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-5 no. 2,
pp. 179–190.

Du Preez, J. A. (1993). Discriminating between languages by means of Hidden Markov Models. Internal
research report, University of Stellenbosch, South Africa.

He, Y. (1988). Extended Viterbi algorithm for second order hidden Markov process. Proceedings of the
IEEE 9th International Conference on Pattern Recognition, pp. 718–720. Rome, Italy.

Gillick, L. & Cox, S. J. (1989). Some statistical issues in the comparison of speech recognition algorithms.
Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing,
pp. 532–535. Glasgow, U.K.

Gray, R. M. (1984). Vector quantization. IEEE Acoustics Speech and Signal Processing Magazine, vol. 1
no. 2, pp. 4–29.

Jelinek, F., Mercer, R. L. & Roukos, S. (1992). Principles of lexical language modelling for speech
recognition. In Advances in speech signal processing (S. Furui and M. M. Sondhi, eds), Marcel Dekker,
New York.

Kriouile, A., Mari, J.-F. & Haton, J.-P. (1990). Some improvements in speech recognition based on HMM.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 545–548. Albuquerque, U.S.A.

Lee, K. F. (1989). Automatic Speech Recognition: The Development of the SPHINX System. Kluwer
Academic publishers.

Levinson, S. E. (1986). Continuously variable duration hidden Markov models for automatic speech
recognition. Computer Speech and Language, vol. 1 no. 1, pp. 29–45.

Mari, J.-F. & Haton, J.-P. (1994). Automatic word recognition based on second-order hidden Markov
models. In ICSLP-94, pp. 247–250.

Mari, J.-F., Fohr, D. & Junqua, J. C. (1996). A second-order HMM for high performance word and
phoneme-based continuous speech recognition. Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 435–438. Atlanta, U.S.A.

Mari, J.-F., Haton, J.-P. & Kriouile, A. (1997). Automatic word recognition based on second-order hidden
Markov models. IEEE Transactions on Speech and Audio Processing, vol. 5 no. 1, pp. 22–25.

Poritz, A. B. (1988). Hidden Markov models: a guided tour. Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 7–12. New York, U.S.A.

(Received 24 March 1997 and accepted for publication 8 December 1997)

Appendix A: proof that ORED results in equivalent models

Section 3 shows that the normal Rth-order model, and its first-order equivalent, apply
the same free parameters in a different structure. The following proofs show that a
second-order model, and its first-order version resulting from the ORED algorithm,
are mathematically equivalent. The Corollary then extends this result to higher-order

36 J. A. du Preez

models. In the following, the second-order HMM is M2 and its equivalent first-order
HMM is M1. M2 consists of N emitting states, augmented by an initial and a terminal
null state.

Definition: Any two models M1 and M2 are defined as equivalent if
f(XL

1 |M2)=f(XL
1 |M1) for any arbitrary observation sequence XL

1 . In other words, two
models are only considered as equivalent if they yield the same likelihood, regardless
of the specific observation sequence.

Theorem 1: Consider any sequence of states that may validly follow one other in a
second-order HMM. Call it QL+1

0 ={Q0=0, Q1, Q2, . . . , QL, QL+1=N+1}. For the first-
order equivalent model, construct the following state sequence:

SL+1
0 ={S0=Q0, S1

=(Q0, Q1), . . . , Sl−1=(Ql−2, Ql−1), Sl=(Ql−1, Ql), . . . , SL+1=(QL,QL+1)} (A.1)

Then QL+1
0 ↔SL+1

0 forms a one-to-one mapping of all valid state sequences in the second-
order HMM to all valid state sequences in its first-order equivalent.

Proof: First consider the forward mapping QL+1
0 ↔SL+1

0 . Note that, from the algorithm
of Section 3, the states in M1 are specifically created to represent either the first state
of M2, or combinations of coupled states, making the constructed states valid for M1.
M1 is constructed to allow transitions from state Sl−1=(Ql−2, Ql−1) to Sl=(Ql−1, Ql)
if it were legal in model M2 to go from state Ql−2 to Ql−1 to Ql. Therefore the sequence
of the constructed states is also valid. It is also clear from this construction that any
specific QL+1

0 maps to a unique SL+1
0 .

Now consider the backward mapping QL+1
0 ←SL+1

0 . The uniqueness once again follows
directly from the construction. From the algorithm of Section 3, there will only be a
transition present between states Sl−1=(Ql−2, Ql−1) and Sl=(Ql−1, Ql) if there were
transitions from state Ql−2 to Ql−1 to Ql. Therefore, if SL+1

0 is a valid sequence, QL+1
0

will also be so.
Theorem 2: The likelihood of an observation sequence XL

1 and a specific state sequence
QL+1

0 of the second-order HMM is equal to the likelihood of XL
1 and the associated

unique state sequence SL+1
0 (defined in Theorem 1) of the equivalent first-order HMM,

i.e. f(XL
1 , QL+1

0 |M2)=f(XL
1 , SL+1

0 |M1).
Proof: Firstly, determine the likelihood using M2. Using the definition of conditional

probability, as well as the HMM assumptions 1 and 2, yields:

f(XL
1 , QL

+10 |M2)=P(QL+1 |XL
1 , QL

0 , M2)f(XL
1 , QL

0 |M)

=P(QL+1 |QL
L−1, M2)f(xL |XL−1

1 , QL
0 , M2)f(XL−1

1 , QL
0 |M2)

=a′QL−1QLQL+1f(xL |QL, M2)f(XL−1
1 , QL

0 |M2). (A.2)

This last factor on the right hand side of (A.2) is of the same form as the left hand
side. Recursive application of this expression then yields:

f(XL
1 , QL+1

0 |M2)=a′QL−1QLQL+1f(xL |QL, M2)a′QL−2QL−1QL

· · · f(x2 |Q2, M2)a′Q0Q1Q2 f(x1 |Q1, M2)a′Q0Q1. (A.3)

Following the development of (A.3), the likelihood of M1 can be shown to be

37Efficient training of high-order hidden Markov models

f(XL
1 , SL+1

0 |M1)=aS0S1 f (x1 |S1, M1)aS1S2 f (x2 |S2, M1)

· · ·aSL−1SL f (xL |SL, M1)aSLSL+1. (A.4)

Substitute (A.1) into (A.3) to obtain

f(XL
1 , SL+1

0 |M1)=aQ0(Q0,Q1)f(x1 |S1=(Q0, Q1), M1)a(Q0,Q1)(Q1,Q2)f(x2|S2=(Q1, Q2), M1)

· · ·a(QL−2,QL−1)(QL–1,QL)f(xL |SL=(QL−1, QL), M1)a(QL−1,QL)(QL,QL+1). (A.5)

Now from step 3 of the ORED algorithm we have

aQ0(Q0,Q1)=a′Q0Q1

a(Ql−2,Ql–1)(Ql−1,Ql)=a′Ql−2Ql−1Ql
2ΖlΖL+1, (A.6)

and also
f(xl |Sl=(Ql−1, Ql), M1)=f(xl |Ql, M2) l=1 · · · L. (A.7)

Substituting (A.6) and (A.7) into (A.5) yields:

f(XL
1 , SL+1

0 |M1)=a′Q0Q1Q0f(x1 |Q1, M2)a′Q0Q1Q2f(x2 |Q2, M2)

· · · a′QL−2QL–1QLf(xL |QL, M2)a′QL−1QLQL+1

=f(XL
1 , QL+1

0 |M)

Theorem 3: The likelihood of attributing an observation sequence to a given second-
order HMM is equal to being attributed to its transformed first-order version.

Proof: Theorem 2 state that f(XL
1 , QL+1

0 |M2)=f(XL
1 , SL+1

0 |M1), where the two state
sequences correspond as is defined in Theorem 1. It is also known from Theorem 1
that for these two models there is a one-to-one mapping of such sequences. Therefore

]
!S

L+1
0

f(XL
1 , SL+1

0 |M1)=]
!Q

L+1
0

f(XL
1 , QL+1

0 |M2) (A.8)

The respective state sequences, over which is summed, are mutually exclusive and
cover the whole sample space of such sequences (they form a partition). Therefore both
sides of (A.8) reduce to marginal pdf.s giving the required result:

f(XL
1 |M2)=f(XL

1 |M)

Corollary: The likelihood of attributing an observation sequence to a given Rth-
order HMM is equal to being attributed to its transformed first-order version.

Proof: An Rth-order model simply extends the memory of an R−1th-order model
by one time step. Consider a second-order HMM, transformed to its first-order
equivalent according to the given algorithm. Now replace each of the transition
probabilities in the equivalent first-order model by the multiple transition probabilities
of the second-order model with the same structure. More formally stated, let Aj be the

38 J. A. du Preez

set of states that directly precedes state S=j. Replace the probability ajk that is joining
the states S=j and S=k by the multiple probabilities aijk where ivAj. The resulting
model is the second-order equivalent of the third-order version of the original model.
Using the algorithm of Section 3 this model can, of course, once again be transformed
to an equivalent first-order model, thus yielding the first-order equivalent of a third-
order model. Note that, although the base model is third-order, the transformation
was still used to transform a second-order to first-order model. The proof for equivalence
that was previously supplied therefore still applies. Repeated application of this process
shows that a HMM of any order has a first-order equivalent.

Appendix B: basis of the FIT algorithm; transitions in a first-order HMM trained
on second-order observations

In this section we investigate the behaviour of transition probabilities when training a
first-order model (M1) on data that is described by the second-order model (M2) of
similar structure. Consider the first-order probability in model M2 of state Q=j, j>0
being followed by state Q=k (without any consideration of earlier states). Transitions
originating at the initial state are excluded since they are inherently of first-order. Let
Aj represent the set of state that have a direct transition leading to state Q=j. Using
the definition of total probability, conditional probability and the Bayes rule yields

P(Ql=k |Ql−1=j, M2)=]
ivAj

PQl=k, Ql−2=i |Ql−1=j, M2), j>0, l>1

=]
ivAj

P(Ql=k |Ql−1=j, Ql−2=i, M2)P(Ql−2=i |Ql−1=j, M2)

=]
ivAj

a′ijk P(Ql−1=j |Ql−2=i, M2)
P(Ql−2=i |M2)
P(Ql−1=j |M2)

. (B.1)

Due to the P(Ql−2=i |M2)/P(Ql−1=j |M2) factor, the required probability is a function
of time. This suggests that the closest approximation to a second-order HMM using a
first-order HMM of similar structure would make use of restricted time-varying
transition probabilities. To make this time-dependence explicit, (B.1) can be rewritten
as

ajk(l)=]
ivAj

a′ijkaij(l−1)
P(Ql−2=i |M2)
P(Ql−1=j |M2)

, j>0, l>1.

=]
ivAj

a′ijkwij(l−1) with wij(l−1)=aij(l−1)
P(Ql−2=i |M2)
P(Ql−1=j |M2)

(B.2)

If we assume that Q=i is reachable from the initial state (no dead states), it implies
that &lwij(l−1)>0. From (12) it follows that &ia′ijkr0t&lajk(l)r0. In other words, if at
least one of a set of second-order transition probabilities is non-zero, then the time-
varying first-order approximation will be non-zero somewhere in time. First-order
HMMs do not account for the time varying nature of (B.2), but will approximate

39Efficient training of high-order hidden Markov models

it with a single constant, let’s say ajk=g(ajk(l)) where g() represents the unknown
approximation. If &lajk(l)r0, any reasonable approximation ajk=g(ajk(l)) will result in
ajkr0. Therefore, for any reasonable g() it follows that &ia′ijkr0tajkr0. This leads us
to conclude that if any in a set of second-order transition probabilities are greater than
zero, any reasonable (constant) first-order approximation of it will also be greater than
zero. This proves that trained first-order probabilities can be utilized to determine
which sets of second-order transition probabilities are viable, thereby avoiding the
training of redundant parameters.

